# ACADEMIC REGULATIONS COURSE STRUCTURE AND DETAILED SYLLABUS



# ELECTRONICS AND INSTRUMENTATION ENGINEERING

For

**B.TECH. FOUR YEAR DEGREE COURSE** (Applicable for the batches admitted from 2013-14) (I - IV Years Syllabus)



JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD KUKATPALLY, HYDERABAD - 500 085.

# ACADEMIC REGULATIONS R13 FOR B. TECH. (REGULAR)

#### Applicable for the students of B. Tech. (Regular) from the Academic Year 2013-14 and onwards

# 1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:

- 1.1 The candidate shall pursue a course of study for not less than four academic years and not more than eight academic years.
- 1.2 After eight academic years of course of study, the candidate is permitted to write the examinations for two more years.
- 1.3 The candidate shall register for 224 credits and secure 216 credits with compulsory subjects as listed in Table-1.

| Serial Number | Subject Particulars            |
|---------------|--------------------------------|
| 1             | All practical subjects         |
| 2             | Industry oriented mini project |
| 3             | Comprehensive Viva-Voce        |
| 4             | Seminar                        |
| 5             | Project work                   |

# **Table 1: Compulsory Subjects**

2 The students, who fail to fulfill all the academic requirements for the award of the degree within ten academic years from the year of their admission, shall forfeit their seats in B. Tech. course.

# 3 Courses of study

The following courses of study are offered at present as specializations for the B. Tech. Course:

| Branch Code | Branch                                      |
|-------------|---------------------------------------------|
| 01          | Civil Engineering                           |
| 02          | Electrical and Electronics Engineering      |
| 03          | Mechanical Engineering                      |
| 04          | Electronics and Communication Engineering   |
| 05          | Computer Science and Engineering            |
| 08          | Chemical Engineering                        |
| 10          | Electronics and Instrumentation Engineering |

| 11 | Bio-Medical Engineering                  |
|----|------------------------------------------|
| 12 | Information Technology                   |
| 14 | Mechanical Engineering (Mechatronics)    |
| 17 | Electronics and Telematics Engineering   |
| 18 | Metallurgy and Material Technology       |
| 19 | Electronics and Computer Engineering     |
| 20 | Mechanical Engineering (Production)      |
| 21 | Aeronautical Engineering                 |
| 22 | Instrumentation and Control Engineering  |
| 23 | Biotechnology                            |
| 24 | Automobile Engineering                   |
| 25 | Mining Engineering                       |
| 26 | Mining Machinery                         |
| 27 | Petroleum Engineering                    |
| 28 | Civil and Environmental Engineering      |
| 29 | Mechanical Engineering (Nano Technology) |
| 30 | Agricultural Engineering                 |
| 31 | Computer Science & Technology            |

# 4 <u>Credits</u>

|                            | l Year         |         | Semester       |          |
|----------------------------|----------------|---------|----------------|----------|
|                            | Periods / Week | Credits | Periods / Week | Credits  |
| Theory                     | 03+1/03        | 06      | 04             | 04       |
| Theory                     | 02             | 04      | —              | —        |
| Practical                  | 03             | 04      | 03             | 02       |
| Drawing                    | 02+03          | 06      | 03<br>06       | 02<br>04 |
| Mini Project               | —              | _       | —              | 02       |
| Comprehensive<br>Viva Voce | _              | _       | _              | 02       |
| Seminar                    | —              | —       | 6              | 02       |
| Project                    | —              |         | 15             | 10       |

# 5 Distribution and Weightage of Marks

- 5.1 The performance of a student in each semester or I year shall be evaluated subject-wise for a maximum of 100 marks for a theory and 75 marks for a practical subject. In addition, industry-oriented miniproject, seminar and project work shall be evaluated for 50, 50 and 200 marks, respectively.
- 5.2 For theory subjects the distribution shall be 25 marks for Internal Evaluation and 75 marks for the End-Examination.
- For theory subjects, during a semester there shall be 2 mid-term 5.3 examinations. Each mid- term examination consists of one objective paper, one essay paper and one assignment. The objective paper and the essay paper shall be for 10 marks each with a total duration of 1 hour 20 minutes (20 minutes for objective and 60 minutes for essay paper). The Objective paper is set with 20 bits of multiple choice, fill-in the blanks and matching type of questions for a total of 10 marks. The essay paper shall contain 4 full questions (one from each unit) out of which, the student has to answer 2 questions, each carrying 5 marks. While the first mid-term examination shall be conducted on 1 to 2.5 units of the syllabus, the second mid-term examination shall be conducted on 2.5 to 5 units. Five (5) marks are allocated for Assignments (as specified by the subject teacher concerned). The first Assignment should be submitted before the conduct of the first mid-examination, and the second Assignment should be submitted before the conduct of the second mid-examination. The total marks secured by the student in each mid-term examination are evaluated for 25 marks, and the average of the two mid-term examinations shall be taken as the final marks secured by each candidate. However, in the I year, there shall be 3 mid term examinations, each for 25 marks, along with 3 assignments in a similar pattern as above (1<sup>st</sup> mid shall be from Unit-I, 2<sup>nd</sup> mid shall be 2 &3 Units and 3<sup>rd</sup> mid shall be 4 & 5 Units) and the average marks of the examinations secured (each evaluated for a total of 25 marks) in each subject shall be considered to be final marks for the internals/sessionals. If any candidate is absent from any subject of a mid-term examination, an on-line test will be conducted for him by the University.

The details of the Question Paper pattern without deviating from the R13 regulations as notified in the website is as follows:

- The End semesters Examination will be conducted for 75 marks which consists of two parts viz. i). Part-A for 25 marks, ii). Part –B for 50 marks.
- Part-A is compulsory question which consists of ten subquestions. The first five sub-questions are from each unit and carries 2 marks each. The next five sub-questions

are one from each unit and carries 3 marks each.

- Part-B consists of five Questions (numbered from 2 to 6) carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice (that means there will be two questions from each unit and the student should answer any one question)
- 5.4 For practical subjects there shall be a continuous evaluation during a semester for 25 sessional marks and 50 end semester examination marks. Out of the 25 marks for internal evaluation, day-to-day work in the laboratory shall be evaluated for 15 marks and internal practical examination shall be evaluated for 10 marks conducted by the laboratory teacher concerned. The end semester examination shall be conducted with an external examiner and the laboratory teacher. The external examiner shall be appointed from the clusters of colleges which are decided by the examination branch of the University.
- 5.5 For the subject having design and/or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and Estimation, the distribution shall be 25 marks for internal evaluation (15 marks for day-to-day work and 10 marks for internal tests) and 75 marks for end semester examination. There shall be two internal tests in a Semester and the average of the two shall be considered for the award of marks for internal tests. However, in the I year class, there shall be three tests and the average will be taken into consideration.
- 5.6 There shall be an industry-oriented Mini-Project, in collaboration with an industry of their specialization, to be taken up during the vacation after III year II Semester examination. However, the mini-project and its report shall be evaluated along with the project work in IV year II Semester. The industry oriented mini-project shall be submitted in a report form and presented before the committee. It shall be evaluated for 50 marks. The committee consists of an external examiner, head of the department, the supervisor of the mini-project and a senior faculty member of the department. There shall be no internal marks for industry-oriented mini-project.
- 5.7 There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding of the topic, and submit it to the department. It shall be evaluated by the departmental committee consisting of head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for the seminar.
- 5.8 There shall be a Comprehensive Viva-Voce in IV year II semester.

The Comprehensive Viva-Voce will be conducted by a Committee consisting of Head of the Department and two Senior Faculty members of the Department. The Comprehensive Viva-Voce is intended to assess the student's understanding of the subjects he studied during the B. Tech. course of study. The Comprehensive Viva-Voce is evaluated for 100 marks by the Committee. There are no internal marks for the Comprehensive Viva-Voce.

- 5.9 Out of a total of 200 marks for the project work, 50 marks shall be allotted for Internal Evaluation and 150 marks for the End Semester Examination (Viva Voce). The End Semester Examination of the project work shall be conducted by the same committee as appointed for the industry-oriented mini-project. In addition, the project supervisor shall also be included in the committee. The topics for industry oriented mini project, seminar and project work shall be different from one another. The evaluation of project work shall be made at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project.
- 5.10 The Laboratory marks and the sessional marks awarded by the College are subject to scrutiny and scaling by the University wherever necessary. In such cases, the sessional and laboratory marks awarded by the College will be referred to a Committee. The Committee will arrive at a scaling factor and the marks will be scaled accordingly. The recommendations of the Committee are final and binding. The laboratory records and internal test papers shall be preserved in the respective institutions as per the University rules and produced before the Committees of the University as and when asked for.

#### 6 Attendance Requirements

- 6.1 A student is eligible to write the University examinations only if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
- 6.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee
- 6.3 Shortage of Attendance below 65% in aggregate shall not be condoned.
- 6.4 A student who is short of attendance in semester / I year may seek re-admission into that semester/I year when offered within 4 weeks from the date of the commencement of class work.
- 6.5 Students whose shortage of attendance is not condoned in any semester/I year are not eligible to write their end semester examination of that class and their registration stands cancelled.

- 6.6 A stipulated fee shall be payable towards condonation of shortage of attendance.
- 6.7 A student will be promoted to the next semester if he satisfies the attendance requirement of the present semester/I year, as applicable, including the days of attendance in sports, games, NCC and NSS activities.
- 6.8 If any candidate fulfills the attendance requirement in the present semester or I year, he shall not be eligible for readmission into the same class.

#### 7 Minimum Academic Requirements

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6.

- 7.1 A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/ practical design/drawing subject/project and secures not less than 35% of marks in the end semester exam, and minimum 40% of marks in the sum total of the mid-term and end semester exams.
- 7.2 A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement.
- 7.3 A student will not be promoted from II year to III year unless he fulfils the academic requirement of 34 credits up to II year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- 7.4 A student shall be promoted from III year to IV year only if he fulfils the academic requirements of 56 credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.
- 7.5 A student shall register and put up minimum attendance in all 224 credits and earn 216 credits. Marks obtained in the best 216 credits shall be considered for the calculation of percentage of marks.
- 7.6 Students who fail to earn 216 credits as indicated in the course structure within ten academic years (8 years of study + 2 years additionally for appearing for exams only) from the year of their admission, shall forfeit their seat in B.Tech. course and their admission stands cancelled.

# 8 <u>Course pattern</u>

- 8.1 The entire course of study is for four academic years. I year shall be on yearly pattern and II, III and IV years on semester pattern.
- 8.2 A student, eligible to appear for the end examination in a subject, but absent from it or has failed in the end semester examination, may

write the exam in that subject during the period of supplementary exams.

8.3 When a student is detained for lack of credits/shortage of attendance, he may be re-admitted into the next semester/year. However, the academic regulations under which he was first admitted, shall continues to be applicable to him.

#### 9 Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

| Class Awarded                   | % of marks to be secured        |                       |
|---------------------------------|---------------------------------|-----------------------|
| First Class with<br>Distinction | 70% and above                   | From the aggregate    |
| First Class                     | Below 70 but not less than 60%  | marks<br>secured from |
| Second Class                    | Below 60% but not less than 50% | 216 Credits.          |
| Pass Class                      | Below 50% but not less than 40% |                       |

The marks obtained in internal evaluation and end semester / I year examination shall be shown separately in the memorandum of marks.

#### 10 Minimum Instruction Days

The minimum instruction days for each semester/I year shall be 90/ 180 days.

- 11 There shall be no branch transfers after the completion of the admission process.
- 12 There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Hyderabad.

# 13 WITHHOLDING OF RESULTS

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be withheld and he will not be allowed into the next semester. His degree will be withheld in such cases.

# 14. TRANSITORY REGULATIONS

- 14.1 Discontinued, detained, or failed candidates are eligible for readmission as and when next offered.
- 14.2 After the revision of the regulations, the students of the previous batches will be given two chances for passing in their failed subjects, one supplementary and the other regular. If the students cannot

clear the subjects in the given two chances, they shall be given equivalent subjects as per the revised regulations which they have to pass in order to obtain the required number of credits.

- 14.3 In case of transferred students from other Universities, the credits shall be transferred to JNTUH as per the academic regulations and course structure of the JNTUH.
- 15. General
- 15.1 Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- 15.2 The academic regulation should be read as a whole for the purpose of any interpretation.
- 15.3 In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- 15.4 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
- 15.5 The students seeking transfer to colleges affiliated to JNTUH from various other Universities/Institutions, have to pass the failed subjects which are equivalent to the subjects of JNTUH, and also pass the subjects of JNTUH which the candidates have not studied at the earlier Institution on their own without the right to sessional marks. Further, though the students have passed some of the subjects at the earlier institutions, if the same subjects are prescribed in different semesters of JNTUH, the candidates have to study those subjects in JNTUH in spite of the fact that those subjects are repeated.

\* \* \*

# Academic Regulations R13 For B.Tech. (Lateral Entry Scheme)

Applicable for the students admitted into II year B. Tech. (LES) from the Academic Year 2013-14 and onwards

# 1 Eligibility for award of B. Tech. Degree (LES)

I. The LES candidates shall pursue a course of study for not less than three academic years and not more than six academic years.

II. They shall be permitted to write the examinations for two more years after six academic years of course work.

 The candidate shall register for 168 credits and secure 160 credits from II to IV year B.Tech. Program (LES) for the award of B.Tech. degree with compulsory subjects as listed in Table-1.

| Serial Number | Subject Particulars            |
|---------------|--------------------------------|
| 1             | All practical subjects         |
| 2             | Industry oriented mini project |
| 3             | Comprehensive Viva-Voce        |
| 4             | Seminar                        |
| 5             | Project work                   |

**Table 1: Compulsory Subjects** 

- The students, who fail to fulfil the requirement for the award of the degree in 8 consecutive academic years (6 years of study + 2 years additionally for appearing exams only) from the year of admission, shall forfeit their seats.
- 4. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech. (LES).

## 5. Promotion Rule

A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year only if he fulfils the academic requirements of 34 credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations.

#### 6. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

| Class Awarded                   | % of marks to be secured        |                              |
|---------------------------------|---------------------------------|------------------------------|
| First Class with<br>Distinction | 70% and above                   | From the aggregate           |
| First Class                     | Below 70 but not less than 60%  | marks                        |
| Second Class                    | Below 60% but not less than 50% | secured from<br>216 Credits. |
| Pass Class                      | Below 50% but not less than 40% |                              |

The marks obtained in the internal evaluation and the end semester examination shall be shown separately in the marks memorandum.

7. All the other regulations as applicable to **B. Tech. 4-year degree course** (Regular) will hold good for **B. Tech.** (Lateral Entry Scheme).

# MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

|        | Nature of Malpractices/<br>Improper conduct                                                                                                                                                                                                                                                                                                                                                                                                                                 | Punishment                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | If the candidate:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                 |
| 1. (a) | Possesses or keeps accessible<br>in examination hall, any paper,<br>note book, programmable<br>calculators, Cell phones, pager,<br>palm computers or any other<br>form of material concerned with<br>or related to the subject of the<br>examination (theory or practical)<br>in which he is appearing but has<br>not made use of (material shall<br>include any marks on the body<br>of the candidate which can be<br>used as an aid in the subject of<br>the examination) | examination hall and<br>cancellation of the<br>performance in that subject<br>only.                                                                             |
| (b)    | Gives assistance or guidance or<br>receives it from any other<br>candidate orally or by any other<br>body language methods or<br>communicates through cell<br>phones with any candidate or<br>persons in or outside the exam<br>hall in respect of any matter.                                                                                                                                                                                                              | hall and cancellation of the<br>performance in that subject<br>only of all the candidates<br>involved. In case of an outsider,<br>he will be handed over to the |

| 2. | Has copied in the examination<br>hall from any paper, book,<br>programmable calculators, palm<br>computers or any other form of<br>material relevant to the subject<br>of the examination (theory or<br>practical) in which the candidate<br>is appearing. | examination hall and<br>cancellation of the<br>performance in that subject<br>and all other subjects the<br>candidate has already |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 3. | Impersonates any other<br>candidate in connection with the<br>examination.                                                                                                                                                                                 | The candidate who has                                                                                                             |

|    | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Smuggles in the Answer book or<br>additional sheet or takes out or<br>arranges to send out the question<br>paper during the examination or<br>answer book or additional sheet,<br>during or after the examination.                                                                                                                                                                                                                                                                                                                                                            | Expulsion from the<br>examination hall and<br>cancellation of performance in<br>that subject and all the other<br>subjects the candidate has<br>already appeared including<br>practical examinations and<br>project work and shall not be<br>permitted for the remaining<br>examinations of the subjects of<br>that semester/year. The<br>candidate is also debarred for<br>two consecutive semesters<br>from class work and all<br>University examinations. The<br>continuation of the course by<br>the candidate is subject to the<br>academic regulations in<br>connection with forfeiture of<br>seat. |
| 5. | Uses objectionable, abusive or<br>offensive language in the answer<br>paper or in letters to the<br>examiners or writes to the<br>examiner requesting him to<br>award pass marks.                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. | Refuses to obey the orders of the<br>Chief Superintendent/Assistant –<br>Superintendent / any officer on<br>duty or misbehaves or creates<br>disturbance of any kind in and<br>around the examination hall or<br>organizes a walk out or instigates<br>others to walk out, or threatens<br>the officer-in charge or any<br>person on duty in or outside the<br>examination hall of any injury to<br>his person or to any of his<br>relations whether by words, either<br>spoken or written or by signs or<br>by visible representation,<br>assaults the officer-in-charge, or | college, they shall be expelled<br>from examination halls and<br>cancellation of their<br>performance in that subject<br>and all other subjects the<br>candidate(s) has (have)<br>already appeared and shall not<br>be permitted to appear for the<br>remaining examinations of the<br>subjects of that semester/year.<br>The candidates also are<br>debarred and forfeit their<br>seats. In case of outsiders,<br>they will be handed over to the                                                                                                                                                        |

|    | any person on duty in or outside<br>the examination hall or any of his<br>relations, or indulges in any other<br>act of misconduct or mischief<br>which result in damage to or<br>destruction of property in the<br>examination hall or any part of the<br>College campus or engages in<br>any other act which in the opinion<br>of the officer on duty amounts to<br>use of unfair means or<br>misconduct or has the tendency<br>to disrupt the orderly conduct of<br>the examination. |                                                                                                                                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Leaves the exam hall taking away<br>answer script or intentionally<br>tears of the script or any part<br>thereof inside or outside the<br>examination hall.                                                                                                                                                                                                                                                                                                                             | examination hall and<br>cancellation of performance in                                                                                                                                                                   |
| 8. | Possess any lethal weapon or<br>firearm in the examination hall.                                                                                                                                                                                                                                                                                                                                                                                                                        | Expulsion from the<br>examination hall and<br>cancellation of the<br>performance in that subject<br>and all other subjects the<br>candidate has already<br>appeared including practical<br>examinations and project work |

|     |                                                                                                                                                                                                                             | and shall not be permitted for<br>the remaining examinations of<br>the subjects of that semester/<br>year. The candidate is also<br>debarred and forfeits the seat.                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | If student of the college, who is<br>not a candidate for the particular<br>examination or any person not<br>connected with the college<br>indulges in any malpractice or<br>improper conduct mentioned in<br>clause 6 to 8. | Student of the colleges<br>expulsion from the<br>examination hall and<br>cancellation of the<br>performance in that subject<br>and all other subjects the<br>candidate has already<br>appeared including practical<br>examinations and project work<br>and shall not be permitted for<br>the remaining examinations of<br>the subjects of that semester/<br>year. The candidate is also<br>debarred and forfeits the seat.<br>Person(s) who do not<br>belong to the College will be<br>handed over to police and, a<br>police case will be registered<br>against them. |
| 10. | Comes in a drunken condition to the examination hall.                                                                                                                                                                       | Expulsion from the<br>examination hall and<br>cancellation of the<br>performance in that subject<br>and all other subjects the<br>candidate has already<br>appeared including practical<br>examinations and project work<br>and shall not be permitted for<br>the remaining examinations of<br>the subjects of that semester/<br>year.                                                                                                                                                                                                                                 |
| 11. | Copying detected on the basis of<br>internal evidence, such as,<br>during valuation or during special<br>scrutiny.                                                                                                          | Cancellation of the<br>performance in that subject<br>and all other subjects the<br>candidate has appeared<br>including practical                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| 12. | If any malpractice is detected<br>which is not covered in the above<br>clauses 1 to 11 shall be reported<br>to the University for further action<br>to award suitable punishment. |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     |                                                                                                                                                                                   |  |

# Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
  - (i) A show cause notice shall be issued to the college.
  - (ii) Impose a suitable fine on the college.
  - (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD.

# B. TECH. ELECTRICAL AND ELECTRONICS ENGINEERING

# I YEAR

| Code   | Subject                                          | L  | T/P/D | С  |
|--------|--------------------------------------------------|----|-------|----|
| A10001 | English                                          | 2  | -     | 4  |
| A10002 | Mathematics – I                                  | 3  | 1     | 6  |
| A10003 | Mathematical Methods                             | 3  | -     | 6  |
| A10004 | Engineering Physics                              | 3  | -     | 6  |
| A10005 | Engineering Chemistry                            | 3  | -     | 6  |
| A10501 | Computer Programming                             | 3  | -     | 6  |
| A10301 | Engineering Drawing                              | 2  | 3     | 6  |
| A10581 | Computer Programming Lab.                        | -  | 3     | 4  |
| A10081 | Engineering Physics / Engineering Chemistry Lab. | -  | 3     | 4  |
| A10083 | English Language Communication Skills Lab.       | -  | 3     | 4  |
| A10082 | IT Workshop / Engineering Workshop               | -  | 3     | 4  |
|        | Total                                            | 19 | 16    | 56 |

# **II YEAR I SEMESTER**

| Code   | Subject                                | L  | T/P/D | С  |
|--------|----------------------------------------|----|-------|----|
| A30007 | Mathematics – III                      | 4  | -     | 4  |
| A30210 | Fundamentals of Electrical Engineering | 4  | -     | 4  |
| A30404 | Electronic Devices and Circuits        | 4  | -     | 4  |
| A30406 | Signals and Systems                    | 4  | -     | 4  |
| A30407 | Switching Theory and Logic Design      | 4  | -     | 4  |
| A31001 | Transduction of Physical Variables     | 4  | -     | 4  |
| A30482 | Electronic Devices and Circuits Lab    | -  | 3     | 2  |
| A30283 | Electrical Engineering Lab             | -  | 3     | 2  |
|        | Total                                  | 24 | 6     | 28 |

# **II YEAR II SEMESTER**

| Code   | Subject                          | L  | T/P/D | С  |
|--------|----------------------------------|----|-------|----|
| A40009 | Environmental Studies            | 4  | -     | 4  |
| A40414 | Principle of Communications      | 4  | -     | 4  |
| A40412 | Electronic Circuit Analysis      | 4  | -     | 4  |
| A40417 | Structured Digital System Design | 4  | -     | 4  |
| A41002 | Transducers and Instrumentation  | 4  | -     | 4  |
| A40211 | Control Systems                  | 4  | -     | 4  |
| A40483 | Electronic Circuit Analysis Lab  | -  | 3     | 2  |
| A41081 | Instrumentation Lab - I          | -  | 3     | 2  |
|        | Total                            | 24 | 6     | 28 |

# III YEAR I SEMESTER

| Code   | Subject                                     | L  | T/P/D | С  |
|--------|---------------------------------------------|----|-------|----|
| A50010 | Managerial Economics and Financial Analysis | 4  | -     | 4  |
| A50424 | Linear IC Applications                      | 4  | -     | 4  |
| A50415 | Pulse and Digital Circuits                  | 4  | -     | 4  |
| A50407 | Signal Conditioning Circuits                | 4  | -     | 4  |
| A50456 | Electronic Instrumentation                  | 4  | -     | 3  |
| A51003 | Virtual Instrumentation                     | 4  | -     | 4  |
| A50490 | Linear IC Applications lab                  | -  | 3     | 2  |
| A51082 | Instrumentation Lab - II                    | -  | 3     | 2  |
|        | Total                                       | 24 | 6     | 28 |

# III YEAR II SEMESTER

| Code   | Subject                                  | L  | T/P/D | С  |
|--------|------------------------------------------|----|-------|----|
| A60014 | Management Science                       | 4  | -     | 4  |
|        | Open Elective                            | 4  | -     | 4  |
| A60117 | Disaster Management                      |    |       |    |
| A60018 | Human Values & Professional Ethics       |    |       |    |
| A60017 | Intellectual Property Rights             |    |       |    |
| A60429 | Microprocessors& Computer Organization   | 4  | -     | 4  |
| A60426 | Digital Signal Processing                | 4  | -     | 4  |
| A60224 | Process Control Instrumentation          | 4  | -     | 4  |
| A60505 | Object Oriented Programming Through JAVA | 4  | -     | 4  |
| A61083 | Process Control Instrumentation Lab      | -  | 3     | 2  |
| A60086 | Advanced Communication Skills Lab        | -  | 3     | 2  |
|        | Total                                    | 24 | 6     | 28 |

#### Code Subject T/P/D С L 4 4 A71104 Analytical Instrumentation -A70439 Embedded Systems 4 -4 4 A70432 VLSI Design 4 -4 A71005 PC Based Instrumentation 4 -Elective –I 4 4 -Telemetry and Telecontrol A71117 Optoelectronics & Laser Instrumentation A70445 A70357 Robotics and Automation Elective - II 4 -4 A70515 Computer Networks A70435 Digital Control Systems A71112 Medical Instrumentation A70497 Embedded Systems Lab 2 -3 A71084 Analytical Instrumentation Lab -3 2 Total 24 6 28

#### **IV YEAR I SEMESTER**

# **IV YEAR II SEMESTER**

| Code                       | Subject                                                                                                   | L  | T/P/D | С  |
|----------------------------|-----------------------------------------------------------------------------------------------------------|----|-------|----|
| A80219<br>A82913<br>A80242 | Elective – III<br>Instrumentation Practice in Industries<br>MEMS Applications<br>SCADA & DCS              | 4  | -     | 4  |
| A80240<br>A80436<br>A80238 | Elective – IV<br>Power Plant Instrumentation<br>Digital Image Processing<br>Neural Networks & Fuzzy Logic | 4  | -     | 4  |
| A80241                     | Reliability Engineering                                                                                   | 4  | -     | 4  |
| A80087                     | Industry Oriented Mini Project                                                                            | -  | -     | 2  |
| A80089                     | Seminar                                                                                                   | -  | 6     | 2  |
| A80088                     | Project Work                                                                                              | -  | 15    | 10 |
| A80090                     | Comprehensive Viva-Voce                                                                                   | -  | -     | 2  |
|                            | Total                                                                                                     | 12 | 21    | 28 |

Note: All End Examinations (Theory and Practical) are of three hours duration. T-Tutorial L – Theory P – Practical C – Credits

D-Drawing

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 21 -

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| I Year B.Tech. EIE |
|--------------------|
|--------------------|

|             | 2 | -/-/- | 4 |  |
|-------------|---|-------|---|--|
| B.Tech. EIE | L | T/P/D | С |  |

#### (A10001) ENGLISH

# Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competencies of Engineering students. The prescribed books and the exercises are meant to serve broadly as students' handbooks.

In the English classes, the focus should be on the skills of reading, writing, listening and speaking and for this the teachers should use the text prescribed for detailed study. For example, the students should be encouraged to read the texts/selected paragraphs silently. The teachers can ask comprehension questions to stimulate discussion and based on the discussions students can be made to write short paragraphs/essays etc.

The text for non-detailed study is for extensive reading/reading for pleasure. Hence, it is suggested that they read it on their own the topics selected for discussion in the class. The time should be utilized for working out the exercises given after each section, as also for supplementing the exercises with authentic materials of a similar kind for example, from newspaper articles, advertisements, promotional material etc.. However, the stress in this syllabus is on skill development, fostering ideas and practice of language skills.

#### **Objectives:**

- To improve the language proficiency of the students in English with emphasis on LSRW skills.
- To equip the students to study academic subjects more effectively using the theoretical and practical components of the English syllabus.
- To develop the study skills and communication skills in formal and informal situations.

# SYLLABUS:

# Listening Skills:

Objectives

- 1. To enable students to develop their listening skill so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation.
- 2. To equip students with necessary training in listening so that they

can comprehend the speech of people of different backgrounds and regions.

Students should be given practice in listening to the sounds of the language to be able to recognise them, to distinguish between them to mark stress and recognise and use the right intonation in sentences.

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

**Speaking Skills:** 

Objectives

- 1. To make students aware of the role of speaking in English and its contribution to their success.
- 2. To enable students to express themselves fluently and appropriately in social and professional contexts.
- Oral practice
- Describing objects/situations/people
- Role play Individual/Group activities (Using exercises from the five units of the prescribed text: Skills Annexe -Functional English for Success)
- Just A Minute(JAM) Sessions.

# **Reading Skills:**

Objectives

- 1. To develop an awareness in the students about the significance of silent reading and comprehension.
- 2. To develop the ability of students to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.
- Skimming the text
- Understanding the gist of an argument
- Identifying the topic sentence
- Inferring lexical and contextual meaning
- Understanding discourse features
- Scanning
- Recognizing coherence/sequencing of sentences

NOTE : The students will be trained in reading skills using the prescribed

# text for detailed study.

They will be examined in reading and answering questions using 'unseen' passages which may be taken from authentic texts, such as magazines/ newspaper articles.

# Writing Skills :

Objectives

- 1. To develop an awareness in the students about writing as an exact and formal skill.
- 2. To equip them with the components of different forms of writing, beginning with the lower order ones.
- Writing sentences
- Use of appropriate vocabulary
- Paragraph writing
- Coherence and cohesiveness
- Narration / description
- Note Making
- Formal and informal letter writing
- Describing graphs using expressions of comparison

#### **TEXTBOOKS PRESCRIBED:**

In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content, divided into Five Units, are prescribed:

**For Detailed study:** First Textbook: "Skills Annexe -Functional English for Success", Published by Orient Black Swan, Hyderabad.

#### For Non-detailed study

1. **Second text book "Epitome of Wisdom",** Published by Maruthi Publications, Guntur

• The course content and study material is divided into Five Units.

# Unit –I:

- 1. Chapter entitled **'Wit and Humour**' from **'Skills Annexe'** -Functional English for Success, Published by Orient Black Swan, Hyderabad.
- 2. Chapter entitled 'Mokshagundam Visvesvaraya' from "Epitome of Wisdom", Published by Maruthi Publications, Hyderabad.
- L- Listening For Sounds, Stress and Intonation
- S- Greeting and Taking Leave, Introducing Oneself and Others (Formal and Informal Situations)

- R- Reading for Subject/ Theme
- W- Writing Paragraphs
- G- Types of Nouns and Pronouns
- V- Homonyms, homophones synonyms, antonyms

# Unit –II

- 1. Chapter entitled **"Cyber Age"** from **"Skills Annexe -Functional English for Success"** Published by Orient Black Swan, Hyderabad.
- 2. Chapter entitled **'Three Days To See'** from **"Epitome of Wisdom"**, Published by Maruthi Publications, Hyderabad.
- L Listening for themes and facts
- S Apologizing, interrupting, requesting and making polite conversation
- R- for theme and gist
- W- Describing people, places, objects, events
- G- Verb forms
- V- noun, verb, adjective and adverb
- Unit –III
- Chapter entitled 'Risk Management' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad.
- 2. Chapter entitled 'Leela's Friend' by R.K. Narayan from "Epitome of Wisdom", Published by Maruthi Publications, Hyderabad.
- L- for main points and sub-points for note taking
- S giving instructions and directions; Speaking of hypothetical situations
- R reading for details
- W note-making, information transfer, punctuation
- G present tense
- V synonyms and antonyms

# Unit –IV

- Chapter entitled 'Human Values and Professional Ethics' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad.
- 2. Chapter entitled **'The Last Leaf'** from **"Epitome of Wisdom"**, Published by Maruthi Publications, Hyderabad.
- L Listening for specific details and information
- S- narrating, expressing opinions and telephone interactions
- R Reading for specific details and information

- W- Writing formal letters and CVs
- G- Past and future tenses
- V- Vocabulary idioms and Phrasal verbs

#### Unit –V

- Chapter entitled 'Sports and Health' from "Skills Annexe -Functional English for Success" Published by Orient Black Swan, Hyderabad
- Chapter entitled 'The Convocation Speech' by N.R. Narayanmurthy' from "Epitome of Wisdom", Published by Maruthi Publications, Hyderabad
- L- Critical Listening and Listening for speaker's tone/ attitude
- S- Group discussion and Making presentations
- R- Critical reading, reading for reference
- W- Project proposals; Technical reports, Project Reports and Research Papers
- G- Adjectives, prepositions and concord
- V- Collocations and Technical vocabulary

Using words appropriately

\* Exercises from the texts not prescribed shall also be used for classroom tasks.

# **REFERENCES**:

- 1. Contemporary English Grammar Structures and Composition by David Green, MacMillan Publishers, New Delhi. 2010.
- 2. Innovate with English: A Course in English for Engineering Students, edited by T Samson, Foundation Books.
- 3. English Grammar Practice, Raj N Bakshi, Orient Longman.
- 4. Technical Communication by Daniel Riordan, 2011. Cengage Publications, New Delhi.
- 5. Effective English, edited by E Suresh Kumar, A RamaKrishna Rao, P Sreehari, Published by Pearson
- 6. Handbook of English Grammar& Usage, Mark Lester and Larry Beason, Tata Mc Graw –Hill.
- 7. Spoken English, R.K. Bansal & JB Harrison, Orient Longman.
- 8. Technical Communication, Meenakshi Raman, Oxford University Press.
- 9. Objective English Edgar Thorpe & Showick Thorpe, Pearson Education.

- 10. Grammar Games, Renuvolcuri Mario, Cambridge University Press.
- 11. Murphy's English Grammar with CD, Murphy, Cambridge University Press.
- 12. Everyday Dialogues in English, Robert J. Dixson, Prentice Hall India Pvt Ltd.,
- 13. ABC of Common Errors Nigel D Turton, Mac Millan Publishers.
- 14. Basic Vocabulary Edgar Thorpe & Showick Thorpe, Pearson Education.
- 15. Effective Technical Communication, M Ashraf Rizvi, Tata Mc Graw Hill.
- 16. An Interactive Grammar of Modern English, Shivendra K. Verma and Hemlatha Nagarajan , Frank Bros & CO.
- 17. A Communicative Grammar of English, Geoffrey Leech, Jan Svartvik, Pearson Education.
- 18. Enrich your English, Thakur K B P Sinha, Vijay Nicole Imprints Pvt Ltd.,
- 19. A Grammar Book for You And I, C. Edward Good, MacMillan Publishers.

# Outcomes:

- Usage of English Language, written and spoken.
- Enrichment of comprehension and fluency.
- Gaining confidence in using language in verbal situations.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| I Year B.Tech. EIE | L | T/P/D | С |
|--------------------|---|-------|---|
|                    | 3 | 1/-/- | 6 |
|                    |   |       |   |

#### (A10002) MATHEMATICS -I

Objectives: To learn

- The types of Matrices and their properties.
- Concept of rank of a matrix and applying the concept of rank to know the consistency of linear equations and to find all possible solutions, if exist.
- The concept of eigenvalues and eigenvectors of a matrix is to reduce a quadratic form into a canonical form through a linear transformation.
- The mean value theorems and to understand the concepts geometrically.
- The functions of several variables and optimization of these functions.
- The evaluation of improper integrals, Beta and Gamma functions.
- Multiple integration and its applications.
- Methods of solving the differential equations of 1<sup>st</sup> and higher order
- The applications of the differential equations to Newton's law of cooling, Natural growth and decay, Bending of beams etc.
- The definition of integral transforms and Laplace Transform.
- Properties of Laplace transform.
- Inverse Laplace Transform.
- Convolution theorem.
- Solution of Differential equations using Laplace transform.

#### UNIT-I

**Theory of Matrices:** Real matrices – Symmetric, skew – symmetric, orthogonal. Complex matrices: Hermitian, Skew-Hermitian and Unitary Matrices. Idempotent matrix, Elementary row and column transformations-Elementary matrix, Finding rank of a matrix by reducing to Echelon and normal forms. Finding the inverse of a non-singular square matrix using row/ column transformations (Gauss- Jordan method). Consistency of system of linear equations (homogeneous and non- homogeneous) using the rank of a matrix. Solving m x n and n x n linear system of equations by Gauss

# elimination.

Cayley-Hamilton Theorem (without proof) – Verification. Finding inverse of a matrix and powers of a matrix by Cayley-Hamilton theorem, Linear dependence and Independence of Vectors. Linear Transformation – Orthogonal Transformation. Eigen values and eigen vectors of a matrix. Properties of eigen values and eigen vectors of real and complex matrices. Finding linearly independent eigen vectors of a matrix when the eigen values of the matrix are repeated.

Diagonalization of matrix – Quadratic forms up to three variables. Rank – Positive definite, negative definite, semi definite, index, signature of quadratic forms. Reduction of a quadratic form to canonical form.

#### UNIT – II

**Differential calculus methods:** Rolle's Mean value Theorem – Lagrange's Mean Value Theorem – Cauchy's mean value Theorem – (all theorems without proof but with geometrical interpretations), verification of the Theorems and testing the applicability of these theorem to the given function.

Functions of several variables: Functional dependence- Jacobian- Maxima and Minima of functions of two variables without constraints and with constraints-Method of Lagrange multipliers.

# UNIT – III

**Improper integration, Multiple integration & applications:** Gamma and Beta Functions –Relation between them, their properties – evaluation of improper integrals using Gamma / Beta functions.

Multiple integrals – double and triple integrals – change of order of integrationchange of variables (polar, cylindrical and spherical) Finding the area of a region using double integration and volume of a region using triple integration.

# UNIT – IV

**Differential equations and applications :** Overview of differential equationsexact, linear and Bernoulli (NOT TO BE EXAMINED). Applications of first order differential equations – Newton's Law of cooling, Law of natural growth and decay, orthogonal trajectories.

Linear differential equations of second and higher order with constant coefficients, Non-homogeneous term of the type  $f(X) = e^{ax}$ , Sin ax, Cos ax, and  $x^n$ ,  $e^{ax} V(x)$ ,  $x^n V(x)$ , method of variation of parameters. Applications to bending of beams, Electrical circuits and simple harmonic motion.

# UNIT – V

Laplace transform and its applications to Ordinary differential equations Definition of Integral transform, Domain of the function and Kernel for the Laplace transforms. Existence of Laplace transform. Laplace transform of standard functions, first shifting Theorem, Laplace transform of functions when they are multiplied or divided by "t". Laplace transforms of derivatives and integrals of functions. – Unit step function – second shifting theorem – Dirac's delta function, Periodic function – Inverse Laplace transforms by Partial fractions( Heaviside method) Inverse Laplace transforms of functions when they are multiplied or divided by "s", Inverse Laplace Transforms of derivatives and integrals of functions, Convolution theorem –- Solving ordinary differential equations by Laplace transforms.

#### **TEXT BOOKS:**

- 1. Advanced engineering Mathematics by Kreyszig, John Wiley & Sons Publishers.
- 2. Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.

# **REFERENCES:**

- Advanced Engineering Mathematics by R.K. Jain & S.R.K. Iyengar, 3<sup>rd</sup> edition, Narosa Publishing House, Delhi.
- Engineering Mathematics I by T.K. V. Iyengar, B. Krishna Gandhi & Others, S. Chand.
- Engineering Mathematics I by D. S. Chandrasekhar, Prison Books Pvt. Ltd.
- 4. Engineering Mathematics I by G. Shanker Rao & Others I.K. International Publications.
- Advanced Engineering Mathematics with MATLAB, Dean G. Duffy, 3rd Edi, CRC Press Taylor & Francis Group.
- Mathematics for Engineers and Scientists, Alan Jeffrey, 6<sup>th</sup> Edi, 2013, Chapman & Hall/ CRC
- 7. Advanced Engineering Mathematics, Michael Greenberg, Second Edition, Pearson Education.

#### Outcome:

 After learning the contents of this Unit the student is able to write the matrix representation of a set of linear equations and to analyze solutions of system of equations.

- The student will be able to understand the methods of differential calculus to optimize single and multivariable functions.
- The student is able to evaluate the multiple integrals and can apply the concepts to find the Areas, Volumes, Moment of Inertia etc., of regions on a plane or in space.
- The student is able to identify the type of differential equation and uses the right method to solve the differential equation. Also able to apply the theory of differential equations to the real world problems.
- The student is able to solve certain differential equations using Laplace Transform. Also able to transform functions on time domain to frequency domain using Laplace transforms.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| l Year B.Tech. EIE | L | T/P/D | С |
|--------------------|---|-------|---|
|                    | 3 | -/-/- | 6 |

#### (A10003) MATHEMATICAL METHODS

#### Objectives:

- The objective is to find the relation between the variables x and y out of the given data (x,y).
- This unit also aims to find such relationships which exactly pass through data or approximately satisfy the data under the condition of least sum of squares of errors.
- The aim of numerical methods is to provide systematic methods for solving problems in a numerical form using the given initial data.
- This topic deals with methods to find roots of an equation and solving a differential equation.
- The numerical methods are important because finding an analytical procedure to solve an equation may not be always available.
- In the diverse fields like electrical circuits, electronic communication, mechanical vibration and structural engineering, periodic functions naturally occur and hence their properties are very much required.
- Indeed, any periodic and non-periodic function can be best analyzed in one way by Fourier series and transforms methods.
- The unit aims at forming a partial differential equation (PDE) for a function with many variables and their solution methods. Two important methods for first order PDE's are learnt. While separation of variables technique is learnt for typical second order PDE's such as Wave, Heat and Laplace equations.
- In many Engineering fields the physical quantities involved are vectorvalued functions.
- Hence the unit aims at the basic properties of vector-valued functions and their applications to line integrals, surface integrals and volume integrals.

# UNIT – I:

# Interpolation and Curve fitting:

**Interpolation:** Introduction- Errors in Polynomial Interpolation – Finite differences- Forward Differences- Backward differences –Central differences – Symbolic relations and separation of symbols- Difference Equations – Differences of a polynomial-Newton's formulae for interpolation – Central difference interpolation Formulae – Gauss Central Difference Formulae –

Interpolation with unevenly spaced points-Lagrange's Interpolation formula. B. Spline interpolation – Cubic spline.

**Curve fitting**: Fitting a straight line –Second degree curve-exponential curvepower curve by method of least squares.

UNIT – II :

#### Numerical techniques:

Solution of Algebraic and Transcendental Equations and Linear system of equations: Introduction – Graphical interpretation of solution of equations . The Bisection Method – The Method of False Position – The Iteration Method – Newton-Raphson Method .

Solving system of non-homogeneous equations by L-U Decomposition method(Crout's Method)Jacobi's and Gauss-Seidel Iteration method

Numerical Differentiation, Integration, and Numerical solutions of First order differential equations: Numerical differentiation, Numerical integration - Trapezoidal rule, Simpson's 1/3<sup>rd</sup> and 3/8 Rule, Generalized Quadrature.

Numerical solution of Ordinary Differential equations: Solution by Taylor's series method –Picard's Method of successive Approximation- single step methods-Euler's Method-Euler's modified method, Runge-Kutta Methods, Predictor –corrector methods(Milne's Method and Adams-Bashforth methods only).

#### UNIT – III:

Fourier series and Fourier Transforms: Definition of periodic function.

Fourier expansion of periodic functions in a given interval of length  $2\pi$ Determination of Fourier coefficients – Fourier series of even and odd functions – Fourier series in an arbitrary interval – even and odd periodic continuation – Half-range Fourier sine and cosine expansions.

Fourier integral theorem - Fourier sine and cosine integrals. Fourier transforms – Fourier sine and cosine transforms – properties – inverse transforms – Finite Fourier transforms.

#### UNIT-IV:

**Partial differential equations :** Introduction and Formation of partial differential equation by elimination of arbitrary constants and arbitrary functions, solutions of first order linear (Lagrange) equation and non-linear equations (Charpit's method), Method of separation of variables for second order equations –Applications of Partial differential equations-Two dimensional wave equations, Heat equation.

# UNIT – V

Vector Calculus: Vector Calculus: Scalar point function and vector point

function, Gradient- Divergence- Curl and their related properties - Laplacian operator, Line integral – work done – Surface integrals -Volume integral. Green's Theorem, Stoke's theorem and Gauss's Divergence Theorems (Statement & their Verification). Solenoidal and irrotational vectors, Finding Potential function.

# **TEXT BOOKS:**

- 1. Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.
- 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers.

#### **REFERENCES:**

- 1. Mathematical Methods by T.K.V. Iyengar, B.Krishna Gandhi & Others, S. Chand.
- 2. Introductory Methods by Numerical Analysis by S.S. Sastry, PHI Learning Pvt. Ltd.
- 3. Mathematical Methods by G.Shankar Rao, I.K. International Publications, N.Delhi
- 4. Mathematical Methods by V. Ravindranath, Etl, Himalaya Publications.
- Advanced Engineering Mathematics with MATLAB, Dean G. Duffy, 3<sup>rd</sup> Edi, 2013, CRC Press Taylor & Francis Group.
- Mathematics for Engineers and Scientists, Alan Jeffrey, 6<sup>th</sup> Edi, 2013, Chapman & Hall/ CRC
- 7. Advanced Engineering Mathematics, Michael Greenberg, Second Edition, Pearson Education.

#### Outcomes:

From a given discrete data, one will be able to predict the value of the data at an intermediate point and by curve fitting, can find the most appropriate formula for a guessed relation of the data variables. This method of analysis data helps engineers to understand the system for better interpretation and decision making

- After studying this unit one will be able to find a root of a given equation and will be able to find a numerical solution for a given differential equation.
- Helps in describing the system by an ODE, if possible. Also, suggests to find the solution as a first approximation.
- One will be able to find the expansion of a given function by Fourier series and Fourier Transform of the function.
- Helps in phase transformation, Phase change and attenuation of coefficients in acoustics.

- After studying this unit, one will be able to find a corresponding Partial Differential Equation for an unknown function with many independent variables and to find their solution.
- Most of the problems in physical and engineering applications, problems are highly non-linear and hence expressing them as PDEs'. Hence understanding the nature of the equation and finding a suitable solution is very much essential.
- After studying this unit, one will be able to evaluate multiple integrals (line, surface, volume integrals) and convert line integrals to area integrals and surface integrals to volume integrals.
- It is an essential requirement for an engineer to understand the behavior of the physical system.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| Year B.Tech. EIE | L | T/P/D | С |
|------------------|---|-------|---|
|                  | 3 | -/-/- | 6 |

#### (A10004) ENGINEERING PHYSICS

#### **Objectives:**

#### It gives

L

- to the students basic understanding of bonding in solids, crystal structures and techniques to characterize crystals.
- to understand the behavior of electron in a solid and thereby one can determine the conductivity and specific heat values of the solids.
- to study applications in Engineering like memory devices, transformer core and Electromagnetic machinery.
- to help the student to design powerful light sources for various Engineering Applications and also enable them to develop communication systems using Fiber Technology.
- to understand the working of Electronic devices, how to design acoustic proof halls and understand the behavior of the materials at Nano scale.

## UNIT-I

**Crystallography:** Ionic Bond, Covalent Bond, Metallic Bond, Hydrogen Bond, Vander-Waal's Bond, Calculation of Cohesive Energy of diatomic molecule-Space Lattice, Unit Cell, Lattice Parameters, Crystal Systems, Bravais Lattices, Atomic Radius, Co-ordination Number and Packing Factor of SC, BCC, FCC, Miller Indices, Crystal Planes and Directions, Inter Planar Spacing of Orthogonal Crystal Systems, Structure of Diamond and NaCl.

X-ray Diffraction & Defects in Crystals: Bragg's Law, X-Ray diffraction methods: Laue Method, Powder Method: Point Defects: Vacancies, Substitutional, Interstitial, Frenkel and Schottky Defects, line defects (Qualitative) & Burger's Vector.

#### UNIT-II

**Principles of Quantum Mechanics:** Waves and Particles, de Broglie Hypothesis, Matter Waves, Davisson and Germer' Experiment, Heisenberg's Uncertainty Principle, Schrödinger's Time Independent Wave Equation -Physical Significance of the Wave Function – Infinite square well potential, extension to three dimensions

**Elements of Statistical Mechanics & Electron theory of Solids:** Phase space, Ensembles, Micro Canonical, Canonical and Grand Canonical Ensembles - Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac Statistics (Qualitative Treatment), Concept of Electron Gas, , Density of States, Fermi

Energy- Electron in a periodic Potential, Bloch Theorem, Kronig-Penny Model (Qualitative Treatment), E-K curve, Origin of Energy Band Formation in Solids, Concept of Effective Mass of an Electron, Classification of Materials into Conductors, Semi Conductors & Insulators.

#### UNIT-III

**Dielectric Properties:** Electric Dipole, Dipole Moment, Dielectric Constant, Polarizability, Electric Susceptibility, Displacement Vector, Electronic, Ionic and Orientation Polarizations and Calculation of Polarizabilities: Ionic and Electronic - Internal Fields in Solids, Clausius - Mossotti Equation, Piezo electricity and Ferro- electricity.

**Magnetic Properties & Superconducting Properties:** Permeability, Field Intensity, Magnetic Field Induction, Magnetization, Magnetic Susceptibility, Origin of Magnetic Moment, Bohr Magneton, Classification of Dia, Para and Ferro Magnetic Materials on the basis of Magnetic Moment, Domain Theory of Ferro Magnetism on the basis of Hysteresis Curve, Soft and Hard Magnetic Materials, Properties of Anti-Ferro and Ferri Magnetic Materials and their Applications, Superconductivity, Meissner Effect, Effect of Magnetic field, Type-I & Type-II Superconductors, Applications of Superconductors.

#### **UNIT-IV**

**Optics:** Interference-Interference in thin films (Reflected light), Newton rings experiment- Fraunhofer diffraction due to single slit, N-slits, Diffraction grating experiment, Double refraction-construction and working of Nicol's Prism.

Lasers & Fiber Optics: Characteristics of Lasers, Spontaneous and Stimulated Emission of Radiation, Einstein's Coefficients and Relation between them, Population Inversion, Lasing Action, Ruby Laser, Helium-Neon Laser, Semiconductor Diode Laser, Applications of Lasers- Principle of Optical Fiber, Construction of fiber, Acceptance Angle and Acceptance Cone, Numerical Aperture, Types of Optical Fibers: Step Index and Graded Index Fibers, Attenuation in Optical Fibers, Application of Optical Fiber in communication systems.

# UNIT-V:

Semiconductor Physics: Fermi Level in Intrinsic and Extrinsic Semiconductors, Calculation of carrier concentration in Intrinsic &, Extrinsic Semiconductors, Direct and Indirect Band gap semiconductors, Hall Effect-Formation of PN Junction, Open Circuit PN Junction, Energy Diagram of PN Diode, Diode Equation, I-V Characteristics of PN Junction diode, Solar cell, LED & Photo Diodes. Acoustics of Buildings & Acoustic Quieting: Reverberation and Time of Reverberation, Sabine's Formula for Reverberation Time, Measurement of Absorption Coefficient of a Material, factors affecting the Architectural Acoustics and their Remedies.

Nanotechnology: Origin of Nanotechnology, Nano Scale, Surface to Volume

Ratio, Quantum Confinement, Bottom-up Fabrication: Sol-gel, Top-down Fabrication: Chemical Vapour Deposition, Characterization by TEM.

### **TEXT BOOKS:**

- 1. Engineering Physics,K. Malik, A. K. Singh, Tata Mc Graw Hill Book Publishers.
- 2. Engineering Physics, V. Rajendran, Tata Mc Graw Hill Book Publishers.

### **REFERENCES:**

- 1. Fundamentals of Physics, David Halliday, Robert Resnick, Jearl Walker by John Wiley & Sons.
- Sears and Zemansky's University Physics (10<sup>th</sup> Edition) by Hugh D. Young Roger A. Freedman, T. R. Sandin, A. Lewis FordAddison-Wesley Publishers.
- Applied Physics for Engineers P. Madhusudana Rao (Academic Publishing company, 2013).
- 4. Solid State Physics M. Armugam (Anuradha Publications).
- Modern Physics R. Murugeshan & K. Siva Prasath S. Chand & Co. (for Statistical Mechanics).
- A Text Book of Engg Physics M. N. Avadhanulu & P. G. Khsirsagar– S. Chand & Co. (for acoustics).
- 7. Modern Physics by K. Vijaya Kumar, S. Chandralingam: S. Chand & Co.Ltd.
- 8. Nanotechnology M.Ratner & D. Ratner (Pearson Ed.).
- 9. Introduction to Solid State Physics C. Kittel (Wiley Eastern).
- 10. Solid State Physics A.J. Dekker (Macmillan).
- 11. Applied Physics Mani Naidu Pearson Education.

### Outcomes:

- The student would be able to learn the fundamental concepts on behavior of crystalline solids.
- The knowledge on Fundamentals of Quantum Mechanics, Statistical Mechanics enables the student to apply to various systems like Communications Solar Cells, Photo Cells and so on.
- Design, Characterization and study of properties of materials help the student to prepare new materials for various Engineering applications.
- This course also helps the student exposed to non-destructive testing methods.
- Finally, Engineering Physics Course helps the student to develop problem solving skills and analytical skills.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

| L | T/P/D | С |
|---|-------|---|
| 3 | -/-/- | 6 |

#### (A10005) ENGINEERING CHEMISTRY

#### **Objective:**

An engineer is as someone who uses scientific, natural and physical principles to design something of use for people or other living creatures. Much of what any engineer does involves chemistry because everything in our environment has a molecular make up. Engineering requires the concepts of applied chemistry and the more chemistry an engineer understands, the more beneficial it is. In the future, global problems and issues will require an in-depth understanding of chemistry to have a global solution. This syllabus aims at bridging the concepts and theory of chemistry with examples from fields of practical application, thus reinforcing the connection between science and engineering. It deals with the basic principles of various branches of chemistry which are fundamental tools necessary for an accomplished engineer.

# UNIT I:

**Electrochemistry & Corrosion:** Electro Chemistry – Conductance - Specific, Equivalent and Molar conductance and their Units; Applications of Conductance (Conductometric titrations). **EMF:** Galvanic Cells, types of Electrodes – (Calomel, Quinhydrone and glass electrodes); Nernst equation and its applications; concept of concentration cells, electro chemical series, Potentiometric titrations, determination of P<sup>H</sup> using glass electrode-Numerical problems.

**Batteries**: Primary cells (dry cells) and secondary cells (lead-Acid cell, Ni-Cd cell, Lithium cells). Applications of batteries. **Fuel cells** – Hydrogen – Oxygen fuel cell; methanol – oxygen fuel cell; Advantages and Applications.

**Corrosion and its control**: Causes and effects of corrosion; Theories of corrosion – Chemical & Electrochemical corrosion; Types of corrosion (Galvanic, Water line, Pitting and Intergranular); Factors affecting rate of corrosion – Nature of metal and Nature of Environment – Corrosion control methods – Cathodic protection (sacrificial anodic and impressed current). Surface coatings: Metallic coatings & methods of application of metallic coatings - hot dipping (galvanization & tinning), Cementation, cladding, electroplating (copper plating) Electroless plating (Ni plating) - Organic coatings – Paints - constituents and their functions.

### UNIT II:

Engineering Materials: Polymers: Types of Polymerization (Chain & Step growth). Plastics: Thermoplastic & Thermo setting resins; Compounding &

fabrication of plastics (Compression and injection moulding).Preparation, properties, engineering applications of PVC, Teflon and Bakelite.

**Fibers-** Charcterstics of fibers – preparation, properties and uses of Nylon – 6,6 and Dacron – Fiber Reinforced Plastics (FRP) – applications. **Rubbers** – Natural rubber and its vulcanization. Elastomers – Buna-s, Butyl rubber and Thiokol rubber.

**Conducting polymers**: Polyacetylene, Polyaniline, Mechanism of Conduction, doping; applications of Conducting polymers. **Bio-degradable Polymers**- preparation and Applications of Poly vinyl acetate and Poly lactic acid - **Cement**: composition of Portland cement, setting & hardening of cement (reactions), **Lubricants**: Classification with examples- Characterstics of a good lubricant & mechanism of lubrication (thick film, thin film and extreme pressure) – properties of lubricants: viscosity, Cloud point, flash and fire points. **Refractories**: Classification, characteristics of a good refractory and applications.

**Nanomaterials:** Introduction, preparation by sol-gel & chemical vapour deposition methods. Applications of nanomaterials.

UNIT III:

Water and its Treatment: Hardness of Water: Causes of hardness, expression of hardness – units – types of hardness, estimation of temporary & permanent hardness of water by EDTA method - numerical problems. Boiler troubles – Scale & sludges, Priming and foaming, caustic enbrittlement and boiler corrosion; Treatment of boiler feed water – Internal treatment (Phosphate, Colloidal and calgon conditioning) – External treatment – Lime Soda process, Zeolite process and ion exchange process. Numerical Problems. Potable Water - Its Specifications – Steps involved in treatment of potable water – Disinfection of water by chlorination and ozonisation. Reverse osmosis & its significance.

### Unit – IV :

**Fuels & Combustion: Fuels** – Classification – soild fuels : coal – analysis of coal - proximate and ultimate analysis and their significance. Liquid fuels – petroleum and its refining – cracking – types – fixed bed catalytic cracking. Knocking – octane and cetane rating, synthetic petrol, Bergius and Fischer-Tropsch's process: Gaseous fuels - constituents, characteristics and applications of natural gas, LPG and CNG. Analysis of flue gas by Orsat's apparatus – Numerical Problems.

**Combustion** – Definition, Calorific value of fuel – HCV, LCV; Determination of calorific value by Junker's gas calorimeter – theoretical calculation of Calorific value by Dulong's formula – Numerical problems on combustion. **UNIT V:** 

Phase Rule & Surface Chemistry : Phase Rule: Definition of terms: Phase,

component, degree of freedom, phase rule equation. Phase diagrams – one component system- water system. Two component system Lead- Silver, cooling curves, heat treatment based on iron-carbon phase diagram - hardening, annealing and normalization.

**Surface Chemistry: Adsorption** – Types of Adsorption, Isotherms – Freundlich and Langmuir adsorption isotherm, applications of adsorption; **Colloids:** Classification of Colloids; Electrical & optical properties, micelles, applications of colloids in industry.

### **TEXT BOOKS:**

- 1. Engineering Chemistry by R.P. Mani,K.N. Mishra, B. Rama Devi / CENGAGE learning.
- 2. Engineering Chemistry by P.C Jain & Monica Jain, Dhanpatrai Publishing Company (2008).

### **REFERENCE BOOKS**

- 1. Engineering Chemistry by B. Siva Shankar Mc.Graw Hill Publishing Company Limited, New Delhi (2006).
- 2. Engineering Chemistry J.C. Kuriacase & J. Rajaram, Tata McGraw Hills Publishing Company Limited, New Delhi (2004).
- Text Book of Engineering Chemistry by S.S. Dara & Mukkati S. Chand & Co Publishers, New Delhi (2006).
- 4. Chemistry of Engineering Materials by CV Agarwal, C.P Murthy, A.Naidu, BS Publications.

### Outcome:

- Students will demonstrate a depth of knowledge and apply the methods of inquiry in a discipline of their choosing, and they will demonstrate a breadth of knowledge across their choice of varied disciplines.
- Students will demonstrate the ability to access and interpret information, respond and adapt to changing situations, make complex decisions, solve problems, and evaluate actions.
- Students will demonstrate awareness and understanding of the skills necessary to live and work in a diverse engineering world.

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 41 —

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

T/P/D С -/-/-

6

L

3

### (A10501) COMPUTER PROGRAMMING

### **Objectives:**

- To understand the various steps in Program development. •
- To understand the basic concepts in C Programming Language.
- To learn how to write modular and readable C Programs.
- To learn to write programs (using structured programming approach) in C to solve problems.
- To introduce the students to basic data structures such as lists, stacks and queues.
- To make the student understand simple sorting and searching methods.

# UNIT - I

Introduction to Computers - Computer Systems, Computing Environments, Computer Languages, Creating and running programs, Program Development.

Introduction to the C Language – Background, C Programs, Identifiers, Types, Variables, Constants, Input / Output, Operators (Arithmetic, relational, logical, bitwise etc.), Expressions, Precedence and Associativity, Expression Evaluation, Type conversions, Statements- Selection Statements (making decisions) - if and switch statements, Repetition statements (loops)-while, for, do-while statements, Loop examples, other statements related to looping - break, continue, goto, Simple C Program examples.

### UNIT - II

Functions-Designing Structured Programs, Functions, user defined functions, inter function communication, Standard functions, Scope, Storage classesauto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Limitations of recursion, example C programs, Preprocessor commands.

Arrays – Concepts, using arrays in C, inter function communication, array applications, two - dimensional arrays, multidimensional arrays, C program examples.

# UNIT - III

Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, Pointer Applications-Arrays and Pointers, Pointer Arithmetic and arrays, Passing an array to a function,

memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions.

Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C program examples.

# UNIT - IV

Enumerated, Structure, and Union Types– The Type Definition (typedef), Enumerated types, Structures –Declaration, initialization, accessing structures, operations on structures, Complex structures, structures and functions, Passing structures through pointers, self referential structures, unions, bit fields, C programming examples, command –line arguments.

Input and Output – Concept of a file, streams, text files and binary files, Differences between text and binary files, State of a file, Opening and Closing files, file input / output functions (standard library input / output functions for files), file status functions (error handling),Positioning functions, C program examples.

### UNIT – V

Searching and Sorting – Sorting- selection sort, bubble sort, Searching-linear and binary search methods.

Lists- Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Push and Pop Operations, Queues- Enqueue and Dequeue operations.

# TEXT BOOKS:

- 1. Computer Science: A Structured Programming Approach Using C, B.A.Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.
- 2. Programming in C. P. Dey and M Ghosh , Oxford University Press.

# **REFERENCE BOOKS:**

- C& Data structures P. Padmanabham, Third Edition, B.S. Publications.
- 2. C for All, S. Thamarai Selvi, R.Murugesan, Anuradha Publications.
- 3. Problem Solving and Program Design in C, J.R. Hanly and E.B. Koffman, 7<sup>th</sup> Edition, Pearson education.
- 4. Programming in C, Ajay Mittal, Pearson.
- 5. Programming with C, B.Gottfried, 3<sup>rd</sup> edition, Schaum's outlines, TMH.
- 6. Problem solving with C, M.T.Somasekhara, PHI
- 7. Programming with C, R.S.Bickar, Universities Press.
- 8. Computer Programming & Data Structures, E.Balagurusamy, 4<sup>th</sup> edition, TMH.

- 9. Programming in C Stephen G. Kochan, III Edition, Pearson Education.
- 10. The C Programming Language, B.W. Kernighan and Dennis M.Ritchie, PHI.
- 11. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press.

# Outcomes:

- Demonstrate the basic knowledge of computer hardware and software.
- Ability to apply solving and logical skills to programming in C language and also in other languages.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

| L | T/P/D | С |
|---|-------|---|
| 2 | -/-/3 | 6 |

#### (A10301) ENGINEERING DRAWING

### UNIT – I

Introduction to Engineering Drawing: Principles of Engineering Drawing/ Graphics – Various Drawing Instruments – Conventions in Drawing – Lettering practice – BIS Conventions.

Curves: Constructions of Curves used in Engineering Practice:

- a) Conic Sections including the Rectangular Hyperbola General method only.
- b) Cycloid, Epicycloid and Hypocycloid.
- c) Involute.

**Scales**: Construction of different types of Scales, Plain, Diagonal, Vernier scale.

UNIT – II

### **Orthographic Projections in First Angle**

**Projection:** Principles of Orthographic Projections – Conventions – First and Third Angle projections.

Projections of Points : including Points in all four quadrants.

 $\label{eq:projections of Lines: Parallel, perpendicular, inclined to one plane and inclined to both planes. True length and true angle of a line. Traces of a line.$ 

**Projections of Planes:** Plane parallel, perpendicular and inclined to one reference plane. Plane inclined to both the reference planes.

# unit – III

**Projections of Solids:** Projections of regular solids, cube, prisms, pyramids, tetrahedran, cylinder and cone, axis inclined to both planes.

**Sections and Sectional Views**: Right Regular Solids – Prism, Cylinder, Pyramid, Cone – use of Auxiliary views.

# UNIT – IV

**Development of Surfaces:** Development of Surfaces of Right, Regular Solids – Prisms, Cylinder, Pyramids, Cone and their parts. frustum of solids. **Intersection of Solids:-** Intersection of Cylinder Vs Cylinder, Cylinder Vs

Prism, Cylinder Vs Cone.

# UNIT – V

**Isometric Projections :** Principles of Isometric Projection – Isometric Scale – Isometric Views– Conventions – Plane Figures, Simple and Compound

Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of parts with Spherical surface.

**Transformation of Projections :** Conversion of Isometric Views to Orthographic Views. Conversion of orthographic views to isometric views – simple objects.

**Perspective Projections :** Perspective View : Points, Lines and Plane Figures, Vanishing Point Methods (General Method only).

# **TEXT BOOKS**

- 1. Engineering Drawing Basant, Agrawal, TMH.
- 2. Engineering Drawing, N.D. Bhatt.

# **REFERENCES**:

- 1. Engineering Graphics. P I Varghese Tata McGraw Hill Education Pvt. Ltd.
- 2. Engineering drawing P.J. Shah .S.Chand Publishers.
- 3. Engineering Drawing- Johle/Tata Macgraw Hill Book Publishers.
- 4. Engineering Drawing M.B. Shah and B.C. Rana, Pearson.
- 5. Engineering Drawing by K.Venu Gopal & V.Prabu Raja New Age Publications.
- 6. Engineering Drawing by John. PHI Learning Publisher.

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 46 —

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

T/P/D С -/3/-

4

L.

### (A10581) COMPUTER PROGRAMMING LAB

### **Objectives:**

- To write programs in C to solve the problems.
- To implement linear data structures such as lists, stacks, queues.
- To implement simple searching and sorting methods.

# **Recommended Systems/Software Requirements:**

- Intel based desktop PC
- ANSI C Compiler with Supporting Editors

### Week I

a) Write a C program to find the sum of individual digits of a positive integer.

b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.

c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

# Week 2

- a) Write a C program to calculate the following Sum:
  - Sum= $1-x^{2}/2! + x^{4}/4! x^{6}/6! + x^{8}/8! x^{10}/10!$
- b) Write a C program to find the roots of a quadratic equation.

# Week 3

a) The total distance travelled by vehicle in 't' seconds is given by distance s =  $ut+1/2at^2$  where 'u' and 'a' are the initial velocity (m/sec.) and acceleration (m/sec<sup>2</sup>). Write C program to find the distance travelled at regular intervals of time given the values of 'u' and 'a'. The program should provide the flexibility to the user to select his own time intervals and repeat the calculations for different values of 'u' and 'a'.

b) Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +,-,\*, /, % and use Switch Statement)

# Week 4

- a) Write C programs that use both recursive and non-recursive functions
  - i) To find the factorial of a given integer.

To find the GCD (greatest common divisor) of two given integers.

# Week 5

a) Write a C program to find the largest integer in a list of integers.

b) Write a C program that uses functions to perform the following:

- Addition of Two Matrices
- ii) Multiplication of Two Matrices

### Week 6

a) Write a C program that uses functions to perform the following operations:

- To insert a sub-string in to a given main string from a given position.
- ii) To delete n Characters from a given position in a given string.

**b)** Write a C program to determine if the given string is a palindrome or not

# Week 7

a) Write a C program that displays the position or index in the string S where the string T begins, or -1 if S doesn't contain T.

**b)** Write a C program to count the lines, words and characters in a given text.

# Week 8

a) Write a C program to generate Pascal's triangle.

b) Write a C program to construct a pyramid of numbers.

# Week 9

Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression:

1+x+x<sup>2</sup>+x<sup>3</sup>+.....+x<sup>n</sup>

For example: if n is 3 and x is 5, then the program computes 1+5+25+125.

Print x, n, the sum

Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

### Week 10

**a)** 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2's complement of a binary number.

b) Write a C program to convert a Roman numeral to its decimal equivalent.Week 11

Write a C program that uses functions to perform the following operations:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

(Note: represent complex number using a structure.)

### Week 12

a) Write a C program which copies one file to another.

**b)** Write a C program to reverse the first n characters in a file.

(Note: The file name and n are specified on the command line.)

# Week 13

a) Write a C program to display the contents of a file.

**b)** Write a C program to merge two files into a third file (i.e., the contents of the first file followed by those of the second are put in the third file)

# Week 14

a) Write a C program that uses non recursive function to search for a Key value in a given list of integers using Linear search.

b) Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers using Binary search.

### Week 15

a) Write a C program that implements the Selection sort method to sort a given array of integers in ascending order.

b) Write a C program that implements the Bubble sort method to sort a given list of names in ascending order.

### Week 16

Write a C program that uses functions to perform the following operations:

i) Create a singly linked list of integer elements.

ii) Traverse, the above list and display the elements.

# Week 17

Write a C program that implements stack (its operations) using a singly linked list to display a given list of integers in reverse order. Ex. input: 10 23 4 6 output: 6 4 23 10

### Week 18

Write a C program that implements Queue (its operations) using a singly

linked list to display a given list of integers in the same order. Ex. input: 10 23 4 6 output: 10 23 4 6

# Week 19

Write a C program to implement the linear regression algorithm.

# Week 20

Write a C program to implement the polynomial regression algorithm.

# Week 21

Write a C program to implement the Lagrange interpolation.

# Week 22

Write C program to implement the Newton- Gregory forward interpolation.

# Week 23

Write a C program to implement Trapezoidal method.

# Week 24

Write a C program to implement Simpson method.

# **TEXT BOOKS:**

- 1. C programming and Data Structures, P. Padmanabham, Third Edition, BS Publications.
- 2. Computer Programming in C, V. Rajaraman, PHI Publishers.
- 3. C Programming, E.Balagurusamy, 3<sup>rd</sup> edition, TMH Publishers.
- 4. C Programming, M.V.S.S.N.Prasad, ACME Learning Pvt. Ltd.
- 5. C and Data Structures, N.B.Venkateswarlu and E.V.Prasad,S.Chand Publishers
- 6. Mastering C, K.R. Venugopal and S.R. Prasad, TMH Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| I Year B.Tech. EIE | L | T/P/D | С |
|--------------------|---|-------|---|
|                    | - | -/3/- | 4 |

(A10081) ENGINEERING PHYSICS / ENGINEERING CHEMISTRY LAB

# ENGINEERING PHYSICS LAB (Any TEN experiments compulsory)

### Objectives

This course on Physics lab is designed with 13 experiments in an academic year. It is common to all branches of Engineering in B.Tech I<sup>st</sup> year.

The objective of the course is that the student will have exposure to various experimental skills which is very essential for an Engineering student.

The experiments are selected from various areas of Physics like Physical Optics, Lasers, Fiber Optics, Sound, Mechanics, Electricity & Magnetism and Basic Electronics.

Also the student is exposed to various tools like Screw gauge, Vernier Callipers, Physics Balance , Spectrometer and Microscope.

- 1. Dispersive power of the material of a prism Spectrometer
- 2. Determination of wavelength of a source Diffraction Grating.
- 3. Newton's Rings Radius of curvature of plano convex lens.
- 4. Melde's experiment Transverse and longitudinal modes.
- 5. Time constant of an R-C circuit.
- 6. L-C-R circuit.
- 7. Magnetic field along the axis of current carrying coil Stewart and Gees method.
- 8. Study the characteristics of LED and LASER sources.
- 9. Bending losses of fibres & Evaluation of numerical aperture of a given fibre.
- 10. Energy gap of a material of p-n junction.
- 11. Torsional pendulum.
- 12. Wavelength of light -diffraction grating using laser.
- 13. Characteristics of a solar cell

### LABORATORY MANUAL:

1. Laboratory Manual of Engineering Physics by Dr.Y.Aparna & Dr.K.Venkateswara Rao (V.G.S Publishers)

# Outcomes

The student is expected to learn from this laboratory course the concept of error and its analysis. It also allows the student to develop experimental skills to design new experiments in Engineering.

With the exposure to these experiments the student can compare the theory and correlate with experiment.

# ENGINEERING CHEMISTRY LAB

List of Experiments (Any 12 of the following)

### Titrimetry:

- 1. Estimation of ferrous iron by dichrometry.
- 2. Estimation of hardness of water by EDTA method.

### Mineral analysis:

- 3. Determination of percentage of copper in brass.
- 4. Estimation of manganese dioxide in pyrolusite.

### Instrumental Methods:

# Colorimetry:

- 5. Determination of ferrous iron in cement by colorimetric method
- 6. Estimation of copper by colorimetric method.

### Conductometry:

- 7. Conductometric titration of strong acid vs strong base.
- 8. Conductometric titration of mixture of acids vs strong base.

### Potentiometry:

- Titration of strong acid vs strong base by potentiometry.
- 10. Titration of weak acid vs strong base by potentiometry.

### **Physical properties:**

- 11. Determination of viscosity of sample oil by redwood / oswald's viscometer.
- 12. Determination of Surface tension of lubricants.

### Preparations:

- 13. Preparation of Aspirin
- 14. Preparation of Thiokol rubber

# Adsorption:

15. Adsorption of acetic acid on charcoal.

# TEXT BOOKS:

- 1. Practical Engineering Chemistry by K. Mukkanti, etal, B.S. Publications, Hyderabad.
- 2. Inorganic quantitative analysis, Vogel.

# **REFERENCE BOOKS:**

- 1. Text Book of engineering chemistry by R. N. Goyal and Harrmendra Goel, Ane Books Private Ltd.,
- 2. A text book on experiments and calculation Engg. S.S. Dara.
- 3. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya Publications.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

T/P/D C -/3/- 4

L.

### (A10083) ENGLISH LANGUAGE COMMUNICATION SKILLS LAB

The **Language Lab** focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

### Objectives

- To facilitate computer-aided multi-media instruction enabling individualized and independent language learning.
- To sensitise the students to the nuances of English speech sounds, word accent, intonation and rhythm.
- To bring about a consistent accent and intelligibility in their pronunciation of English by providing an opportunity for practice in speaking.
- To improve the fluency in spoken English and neutralize mother tongue influence.
- To train students to use language appropriately for interviews, group discussion and public speaking.

# Syllabus: English Language Communication Skills Lab shall have two parts:

# a. Computer Assisted Language Learning (CALL) Lab

# b. Interactive Communication Skills (ICS) Lab

The following course content is prescribed for the **English Language Communication Skills Lab**.

### Exercise – I

**CALL Lab**: Introduction to Phonetics – Speech Sounds – Vowels and Consonants.

**ICS Lab**: Ice-Breaking activity and JAM session.

Articles, Prepositions, Word formation- Prefixes & Suffixes, Synonyms & Antonyms.

# Exercise – II

**CALL Lab**: Structure of Syllables - Past Tense Marker and Plural Marker – Weak Forms and Strong Forms - Consonant Clusters.

**ICS Lab**: Situational Dialogues – Role-Play- Expressions in Various Situations – Self-introduction and Introducing Others – Greetings – Apologies –

Requests – Social and Professional Etiquette - Telephone Etiquette. Concord (Subject in agreement with verb) and Words often misspeltconfused/misused

# Exercise - III

**CALL Lab:** Minimal Pairs- Word accent and Stress Shifts- Listening Comprehension.

ICS Lab: Descriptions- Narrations- Giving Directions and guidelines.

Sequence of Tenses, Question Tags and One word substitutes.

### Exercise – IV

CALL Lab: Intonation and Common errors in Pronunciation.

ICS Lab: Extempore- Public Speaking

Active and Passive Voice, -Common Errors in English, Idioms and Phrases

# Exercise – V

**CALL Lab:** Neutralization of Mother Tongue Influence and Conversation Practice

ICS Lab: Information Transfer- Oral Presentation Skills

Reading Comprehension and Job Application with Resume preparation.

# Minimum Requirement of infra structural facilities for ELCS Lab:

# 1. Computer Assisted Language Learning (CALL) Lab:

The Computer aided Language Lab for 40 students with 40 systems, one master console, LAN facility and English language software for self- study by learners.

### System Requirement (Hardware component):

Computer network with Lan with minimum 60 multimedia systems with the following specifications:

- (i) P IV Processor
  - a) Speed 2.8 GHZ
  - b) RAM 512 MB Minimum
  - c) Hard Disk 80 GB
- (ii) Headphones of High quality
- 2. Interactive Communication Skills (ICS) Lab :

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio-visual aids with a Public Address System, a T. V., a digital stereo –audio & video system and camcorder etc.

Books Suggested for English Language Lab Library (to be located within

# the lab in addition to the CDs of the text book which are loaded on the systems):

- 1. Suresh Kumar, E. & Sreehari, P. 2009. *A Handbook for English Language Laboratories*. New Delhi: Foundation
- 2. *Speaking English Effectively* 2<sup>nd</sup> Edition by Krishna Mohan and N. P. Singh, 2011. Macmillan Publishers India Ltd. Delhi.
- 3. Sasi Kumar, V & Dhamija, P.V. *How to Prepare for Group Discussion and Interviews.* Tata McGraw Hill
- 4. Hancock, M. 2009. *English Pronunciation in Use. Intermediate.* Cambridge: CUP
- Spoken English: A Manual of Speech and Phonetics by R. K. Bansal & J. B. Harrison. 2013. Orient Blackswan. Hyderabad.
- 6. Hewings, M. 2009. *English Pronunciation in Use. Advanced.* Cambridge: CUP
- 7. Marks, J. 2009. English Pronunciation in Use. Elementary. Cambridge: CUP
- 8. Nambiar, K.C. 2011. Speaking Accurately. A Course in International Communication. New Delhi : Foundation
- 9. Soundararaj, Francis. 2012. Basics of Communication in English. New Delhi: Macmillan
- 10. Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
- 11. English Pronouncing Dictionary Daniel Jones Current Edition with CD.
- **12.** A textbook of English Phonetics for Indian Students by T. Balasubramanian (Macmillan)
- Prescribed Lab Manual: A Manual entitled "English Language Communication Skills (ELCS) Lab Manual- cum- Work Book", published by Cengage Learning India Pvt. Ltd, New Delhi. 2013

# DISTRIBUTION AND WEIGHTAGE OF MARKS

#### English Language Laboratory Practical Examination:

- 1. The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.
- For the Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 year-end Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s).

The year- end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

# Outcomes:

- Better Understanding of nuances of language through audio- visual experience and group activities.
- Neutralization of accent for intelligibility.
- Speaking with clarity and confidence thereby enhancing employability skills of the students.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

I Year B.Tech. EIE

L T/P/D C

4

- -/3/-

# (A10082) IT WORKSHOP / ENGINEERING WORKSHOP

# **Objectives:**

The IT Workshop for engineers is a training lab course spread over 54 hours. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel and Power Point.

PC Hardware introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. The students should work on working PC to disassemble and assemble to working condition and install Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible.

Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced.

Productivity tools module would enable the students in crafting professional word documents, excel spread sheets and power point presentations using the Microsoft suite of office tools and LaTeX. (Recommended to use Microsoft office 2007 in place of MS Office 2003)

# PC Hardware

**Week 1 – Task 1 :** Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

**Week 2 – Task 2 :** Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

**Week 3 – Task 3 :** Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

**Week 4 – Task 4 :** Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

**Week 5 – Task 5: Hardware Troubleshooting:** Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva

Week 6 – Task 6 : Software Troubleshooting : Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

#### Internet & World Wide Web

Week 7 - Task 1 : Orientation & Connectivity Boot Camp : Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Week 8 - Task 2 : Web Browsers, Surfing the Web : Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

**Week 9 - Task 3 : Search Engines & Netiquette :** Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Week 10 - Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install antivirus software, configure their personal firewall and windows update on their computer. Then they need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

**Week 11- Task 5:** Develop your home page using HTML Consisting of your photo, name, address and education details as a table and your skill set as a list.

# **Productivity tools**

### LaTeX and Word

Week 12 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the three tasks and features that would be covered in each, using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter.

**Task 1 : Using LaTeX and Word** to create project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

**Week 13 - Task 2: Creating project** abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Week 14 - Task 3 : Creating a Newsletter : Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

# Excel

Week 15 - Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the two tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

**Task 1: Creating a Scheduler -** Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text

Week 16 - Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP, Sorting, Conditional formatting

### LaTeX and MS/equivalent (FOSS) tool Power Point

Week 17 - Task1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Power point. Students will be given model power

point presentation which needs to be replicated (exactly how it's asked).

Week 18- Task 2: Second week helps students in making their presentations interactive. Topic covered during this week includes: Hyperlinks, Inserting – Images, Clip Art, Audio, Video, Objects, Tables and Charts

Week 19 - Task 3: Concentrating on the in and out of Microsoft power point and presentations in LaTeX. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides.

### **REFERENCE BOOKS:**

- 1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
- 2. LaTeX Companion Leslie Lamport, PHI/Pearson.
- 3. Introduction to Computers, Peter Norton, 6/e Mc Graw Hill Publishers.
- 4. Upgrading and Repairing, PC's 18<sup>th</sup> e, Scott Muller QUE, Pearson Education
- Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech
- IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. – CISCO Press, Pearson Education.
- 7. PC Hardware and A+Handbook Kate J. Chase PHI (Microsoft)

# Outcomes:

- Apply knowledge for computer assembling and software installation.
- Ability how to solve the trouble shooting problems.
- Apply the tools for preparation of PPT, Documentation and budget sheet etc.

#### **ENGINEERING WORKSHOP**

# 1. TRADES FOR EXERCISES:

### At least two exercises from each trade:

- 1. Carpentry
- 2. Fitting
- 3. Tin-Smithy and Development of jobs carried out and soldering.
- 4. Black Smithy

- 5. House-wiring
- 6. Foundry
- 7. Welding
- 8. Power tools in construction, wood working, electrical engineering and mechanical Engineering.

# 2. TRADES FOR DEMONSTRATION & EXPOSURE:

- 1. Plumbing
- 2. Machine Shop
- 3. Metal Cutting (Water Plasma)

# **TEXT BOOK:**

- 1. Work shop Manual P.Kannaiah/ K.L.Narayana/ Scitech Publishers.
- 2. Workshop Manual / Venkat Reddy/ BS Publications/Sixth Edition.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| II Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | 4 | -/-/- | 4 |

### (A30007) MATHEMATICS – III

### Objectives: To learn

- Transforming the given variable coefficient equation (Cauchy's and Lagrange's) into the one with constant coefficients.
- Identifying ordinary points, singular points and regular singular points for the given ODE.
- Finding the series solution around a regular singular point.
- Solve the given ODE with variable coefficients by Frobenius method and test the convergence of its series solution.
- Series solutions for Legendre and Bessel differential equations, analyzing the properties of Legendre and Bessel polynomials.
- Differentiation and Integration of complex valued functions.
- Evaluation of integrals using Cahchy's integral formula.
- Taylor's series, Maclaurin's series and Laurent's series expansions of complex functions
- Evaluation of integrals using residue theorem.
- Transform a given function from z plane to w plane.
- Identify the transformations like translation, magnification, rotation and reflection and inversion.
- Properties of bilinear transformations.

# UNIT – I:

Linear ODE with variable coefficients and series solutions(second order only): Equations reducible to constant coefficients-Cauchy's and Lagrange's differential equations. Motivation for series solutions, Ordinary point and Regular singular point of a differential equation, Transformation of nonzero singular point to zero singular point. Series solutions to differential equations around zero, Frobenius Method about zero.

### Unit-II

**Special Functions :** Legendre's Differential equation, General solution of Legendre's equation, Legendre polynomials Properties: Rodrigue's formula – Recurrence relations, Generating function of Legendre's polynomials – Orthogonality. Bessel's Differential equation, Bessel functions properties: – Recurrence relations, Orthogonality, Generating function , Trigonometric expansions involving Bessel functions.

### UNIT-III:

**Complex Functions –Differentiation and Integration :** Complex functions and its representation on Argand plane, Concepts of limit Continuity, Differentiability, Analyticity, Cauchy-Riemann conditions, Harmonic functions – Milne – Thompson method. Line integral – Evaluation along a path and by indefinite integration – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula.

### UNIT-IV:

**Power series expansions of complex functions and contour Integration:** Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series. Singular point –Isolated singular point – pole of order m – essential singularity. Residue – Evaluation of residue by formula and by Laurent series – Residue theorem. Evaluation of integrals of the type

(a) Improper real integrals  $\int_{-\infty}^{\infty} f(x) dx$ 

(b) 
$$\int_{c}^{c+2\pi} f(\cos\theta,\sin\theta)d\theta$$

#### UNIT-V:

**Conformal mapping:** Transformation of z-plane to w-plane by a function, Conformal transformation. Standard transformations- Translation;

Magnification and rotation; inversion and reflection, Transformations like  $e^z$ , log z,  $z^2$ , and Bilinear transformation. Properties of Bilinear transformation, determination of bilinear transformation when mappings of 3 points are given.

### **TEXT BOOKS:**

- 1. Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.
- 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers.

### **REFERENCES:**

- 1) Complex Variables Principles And Problem Sessions By A.K.Kapoor, World Scientific Publishers.
- 2) Engineering Mathematics-3 By T.K.V.Iyengar and B.Krishna Gandhi Etc.
- 3) A Text Book Of Engineering Mathematics By N P Bali, Manesh Goyal.
- Mathematics for Engineers and Scientists, Alan Jeffrey, 6<sup>th</sup> Edit. 2013, Chapman & Hall/CRC.

- 5) Advanced Engineering Mathematics, Michael Greenberg, Second Edition. Person Education.
- 6) Mathematics For Engineers By K.B.Datta And M.A S.Srinivas, Cengage Publications.

**Outcome:** After going through this course the student will be able to:

- Apply the Frobenius method to obtain a series solution for the given linear 2<sup>nd</sup> ODE.
- Identify Bessel equation and Legendre equation and solve them under special conditions with the help of series solutions method. Also recurrence relations and orthogonality properties of Bessel and Legendre polynomials.

After going to through this course the student will be able to

- a. analyze the complex functions with reference to their analyticity, Integration using Cauchy's integral theorem.
- b. Find the Taylor's and Laurent series expansion of complex functions.
- c. The conformal transformations of complex functions can be dealt with ease.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. EIE-I Sen

| EIE-I Sem | L | T/P/D | С |
|-----------|---|-------|---|
|           | 4 | _     | 4 |

### (A30210) FUNDAMENTALS OF ELECTRICAL ENGINEERING

### Objective:

This course introduces the basic concepts of circuit analysis which is the foundation for all subjects of the Electrical Engineering discipline. The emphasis of this course is laid on the basic analysis of circuits which includes Single phase circuits, magnetic circuits, theorems, transient analysis and network topology.

### UNIT-I:

Introduction to Electrical Circuits and Magnetic Circuits: Circuit Concept – R-L-C parameters – Voltage and Current sources – Independent and dependent sources-Source transformation – Voltage – Current relationship for passive elements – Kirchhoff's laws – network reduction techniques – series, parallel, series parallel, star-to-delta or delta-to-star transformation.

Magnetic Circuits – Faraday's laws of electromagnetic induction – concept of self and mutual inductance – dot convention – coefficient of coupling – composite magnetic circuit - Analysis of series and parallel magnetic circuits.

# UNIT – II:

**Single Phase A.C Circuits:** R.M.S and Average values and form factor for different periodic wave forms, Steady state analysis of R, L and C (in series, parallel and series parallel combinations) with sinusoidal excitation – Concept of Reactance, Impedance, Susceptance and Admittance – Phase and Phase difference – concept of power factor, Real and Reactive powers – J-notation, Complex and Polar forms of representation, Complex power – Resonance – series, parallel circuits, concept of band width and Q factor.

# UNIT – III:

**Network Theorems (Without Proofs):** Tellegen's, Superposition, Reciprocity, Thevenin's, Norton's, Maximum Power Transfer, Millman's and Compensation theorems for d.c. and a.c. excitations.

# UNIT – IV:

**DC Machines:** Dc Machine- Principle & operation of DC Generators and DC Motors , Different types of generator and motors, characteristics of generator and motor, simple problems.(elementary treatment only).

### UNIT – V:

**AC Machines :** Principle, construction and operation if  $1-\phi$  transformer, equivalent circuit, DC & AC test on  $1-\phi$  transformer, transformer regulation,  $1-\phi$  synchronous generator, principle, construction & operation,

characteristics. Principle operation construction of 1- $\phi$  induction motor, characteristics. (Elementary treatment only).

# **TEXT BOOKS:**

- 1. Basic concepts of Electrical Engineering, PS Subramanyam, BS Publications.
- 2. Basic Electrical Engineering, S.N. Singh, PHI.

### **REFERENCE BOOKS:**

- 1. Basic Electrical Engineering, Abhijit Chakrabarthi, Sudipta nath, Chandrakumar Chanda, Tata-McGraw-Hill.
- 2. Principles of Electrical Engineering, V.K Mehta, Rohit Mehta, S.Chand Publications.
- 3. Basic Electrical Engineering, T.K.Nagasarkar and M.S. Sukhija, Oxford University Press.
- 4. Fundamentals of Electrical Engineering, RajendraPrasad, PHI.
- 5. Basic Electrical Engineering by D.P.Kothari , I.J. Nagrath, McGraw-Hill.

# Outcome:

After going through this course the student gets a thorough knowledge on basic electrical parameters and different types electrical (DC and AC)circuits and magnetic, the different methods to solve the voltages, currents, powers of the circuits, the network theorems to solve the circuits, elctromechanical energy conversion principle, construction operation characteristics DC and AC machines, with which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 67 \_\_\_\_\_

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

Il Year B.Tech. EIE-I Sem

L T/P/D С -/-/-4 4

### (A30404) ELECTRONIC DEVICES AND CIRCUITS

#### **Objectives:**

This is a fundamental course, basic knowledge of which is required by all the circuit branch engineers. This course focuses:

- To familiarize the student with the principle of operation, analysis • and design of Junction diode, BJT and FET amplifier circuits, transistors and field effect transistors.
- To understand diode as rectifier.
- To study basic principle of filter circuits and various types.

### UNIT -I:

P-N Junction Diode: Qualitative Theory of P-N Junction, P-N Junction as a Diode, Diode Equation, Volt-Ampere Characteristics, Temperature dependence of VI characteristic, Ideal versus Practical - Resistance levels (Static and Dynamic), Transition and Diffusion Capacitances, Diode Equivalent Circuits, Load Line Analysis, Breakdown Mechanisms in Semiconductor Diodes, Zener Diode Characteristics.

Special Purpose Electronic Devices: Principle of Operation and Characteristics of Tunnel Diode (with the help of Energy Band Diagram), Varactor Diode, SCR and Semiconductor Photo Diode.

# UNIT -II:

Rectifiers and Filters : The P-N junction as a Rectifier, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier, Harmonic components in a Rectifier Circuit, Inductor Filters, Capacitor Filters, L- Section Filters, π- Section Filters, Comparision of Filters, Voltage Regulation using Zener Diode.

### UNIT -III:

Bipolar Junction Transistor and UJT: The Junction Transistor, Transistor Current Components, Transistor as an Amplifier, Transistor Construction, BJT Operation, BJT Symbol, Common Base, Common Emitter and Common Collector Configurations, Limits of Operation, BJT Specifications, BJT Hybrid Model, Determination of h-parameters from Transistor Characteristics, Comparison of CB, CE, and CC Amplifier Configurations, UJT and Characteristics.

# UNIT -IV:

**Transistor Biasing and Stabilization:** Operating Point, The DC and AC Load lines, Need for Biasing, Fixed Bias, Collector Feedback Bias, Emitter Feedback Bias, Collector - Emitter Feedback Bias, Voltage Divider Bias, Bias Stability, Stabilization Factors, Stabilization against variations in V<sub>BE</sub> and  $\beta$ , Bias Compensation using Diodes and Transistors, Thermal Runaway, Thermal Stability, Analysis of a Transistor Amplifier Circuit using h-Parameters.

### UNIT -V:

### Field Effect Transistor and FET Amplifiers

**Field Effect Transistor**: The Junction Field Effect Transistor (Construction, principle of operation, symbol) – Pinch-off Voltage - Volt-Ampere characteristics, The JFET Small Signal Model, MOSFET (Construction, principle of operation, symbol), MOSFET Characteristics in Enhancement and Depletion modes.

**FET Amplifiers:** FET Common Source Amplifier, Common Drain Amplifier, Generalized FET Amplifier, Biasing FET, FET as Voltage Variable Resistor, Comparison of BJT and FET.

### TEXT BOOKS:

- Millman's Electronic Devices and Circuits J. Millman, C.C.Halkias, and Satyabrata Jit, 2 Ed., 1998, TMH.
- 2. Electronic Devices and Circuits Mohammad Rashid, Cengage Learing, 2013.
- 3. Electronic Devices and Circuits David A. Bell, 5 Ed, Oxford.

### **REFERENCE BOOKS:**

- Integrated Electronics J. Millman and Christos C. Halkias, 1991 Ed., 2008, TMH.
- Electronic Devices and Circuits R.L. Boylestad and Louis Nashelsky, 9 Ed., 2006, PEI/PHI.
- Electronic Devices and Circuits B. P. Singh, Rekha Singh, Pearson, 2 Ed, 2013.
- 4. Electronic Devices and Circuits K. Lal Kishore, 2 Ed., 2005, BSP.
- Electronic Devices and Circuits Anil K. Maini, Varsha Agarwal, 1 Ed., 2009, Wiley India Pvt. Ltd.
- Electronic Devices and Circuits S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, 2 Ed., 2008, TMH.

# Outcomes:

At the end of the course, the student will be able to:

- Understand and Analyse the different types of diodes, operation and its characteristics.
- Design and analyse the DC bias circuitry of BJT and FET.
- Design biasing circuits using diodes and transistors.
- To analyze and design diode application circuits, amplifier circuits and oscillators employing BJT, FET devices.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

C 4

| ll Year B.Tech. EIE-I Sem | L | T/P/D |
|---------------------------|---|-------|
|                           | 4 | -/-/- |

### (A30406) SIGNALS AND SYSTEMS

### **Objectives:**

This is a core subject, basic knowledge of which is required by all the engineers.

This course focuses on:

 To get an in-depth knowledge about signals, systems and analysis of the same using various transforms.

### UNIT-I:

# Signal Analysis and Fourier Series

**Signal Analysis:** Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

**Fourier Series:** Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum. **UNIT-II:** 

#### . . \_ .

# Fourier Transforms and Sampling

**Fourier Transforms:** Deriving Fourier Transform from Fourier Series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform.

**Sampling:** Sampling theorem – Graphical and analytical proof for Band Limited Signals, Typers of Sampling - Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass sampling.

# UNIT-III:

Signal Transmission Through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI system, Filter characteristics of Linear Systems, Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization,

Relationship between Bandwidth and Rise time.

### UNIT-IV:

**Convolution and Correlation of Signals:** Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution, Convolution property of Fourier Transforms, Cross Correlation and Auto Correlation of functions, Properties of Correlation function, Energy density spectrum, Parseval's Theorem, Power density spectrum, Relation between Auto Correlation function and Energy/Power spectral density function, Relation between Convolution and Correlation, Detection of periodic signals in the presence of Noise by Correlation, Extraction of signal from noise by filtering.

### UNIT-V:

### Laplace Transforms and Z-Transforms

**Laplace Transforms:** Review of Laplace Transforms (L.T), Partial fraction expansion, Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Constraints on ROC for various classes of signals, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.

**Z–Transforms:** Fundamental difference between Continuous and Discrete time signals, Discrete time signal representation using Complex exponential and Sinusoidal components, Periodicity of Discrete time signal using complex exponential signal, Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

### **TEXT BOOKS:**

- 1. Signals, Systems & Communications B.P. Lathi, 2013, BSP.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, 2 Ed., PHI.

### **REFERENCE BOOKS:**

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2 Ed.
- 2. Signals and Signals Iyer and K. Satya Prasad, Cengage Learning.
- 3. Signals and Systems A.Rama Krishna Rao 2008, TMH.
- 4. Introduction to Signal and System Analysis K.Gopalan 2009, Cengage Learning.
- 5. Fundamentals of Signals and Systems Michel J. Robert, 2008, MGH International Edition.
- Signals, Systems and Transforms C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE.

# **Course Outcomes:**

Upon completing this course the student will be able to:

- Represent any arbitrary signals in terms of complete sets of orthogonal functions and understands the principles of impulse functions, step function and signum function.
- Express periodic signals in terms of Fourier series and express the spectrum and express the arbitrary signal (discrete) as Fourier transform to draw the spectrum.
- Understands the principle of linear system, filter characteristics of a system and its bandwidth, the concepts of auto correlation and cross correlation and power Density Spectrum.
- Can design a system for sampling a signal.
- For a given system, response can be obtained using Laplace transform, properties and ROC of L.T.
- Study the continuous and discrete signal relation and relation between F.T., L.T. & Z.T, properties, ROC of Z Transform.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

#### II Year B.Tech. EIE-I Sem

# L T/P/D C

4 -/-/- 4

#### (A30407) SWITCHING THEORY AND LOGIC DESIGN

#### Course Objectives:

This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To learn basic tools for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits.
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

#### UNIT -I:

Number System and Boolean Algebra And Switching Functions: Number Systems, Base Conversion Methods, Complements of Numbers, Codes-Binary Codes, Binary Coded Decimal Code and its Properties, Unit Distance Codes, Alpha Numeric Codes, Error Detecting and Correcting Codes.

**Boolean Algebra:** Basic Theorems and Properties, Switching Functions, Canonical and Standard Form, Algebraic Simplification of Digital Logic Gates, Properties of XOR Gates, Universal Gates, Multilevel NAND/NOR realizations.

# UNIT -II:

**Minimization and Design of Combinational Circuits:** Introduction, The Minimization with theorem, The Karnaugh Map Method, Five and Six Variable Maps, Prime and Essential Implications, Don't Care Map Entries, Using the Maps for Simplifying, Tabular Method, Partially Specified Expressions, Multioutput Minimization, Minimization and Combinational Design, Arithmetic Circuits, Comparator, Multiplexers, Code Converters, Wired Logic, Tristate Bus System, Practical Aspects related to Combinational Logic Design, Hazards and Hazard Free Relations.

#### UNIT -III:

**Sequential Machines Fundamentals:** Introduction, Basic Architectural Distinctions between Combinational and Sequential circuits, The Binary Cell, Fundamentals of Sequential Machine Operation, The Flip-Flop, The D-Latch Flip-Flop, The "Clocked T" Flip-Flop, The "Clocked J-K" Flip-Flop, Design of a Clocked Flip-Flop, Conversion from one type of Flip-Flop to another, Timing and Triggering Consideration, Clock Skew.

#### UNIT -IV:

**Sequential Circuit Design and Analysis:** Introduction, State Diagram, Analysis of Synchronous Sequential Circuits, Approaches to the Design of Synchronous Sequential Finite State Machines, Design Aspects, State Reduction, Design Steps, Realization using Flip-Flops.

Counters - Design of Single mode Counter, Ripple Counter, Ring Counter, Shift Register, Shift Register Sequences, Ring Counter Using Shift Register.

# UNIT -V:

**Sequential Circuits:** Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques and Merger chart methods-concept of minimal cover table.

Algorithmic State Machines: Salient features of the ASM chart-Simple examples-System design using data path and control subsystems-control implementations-examples of Weighing machine and Binary multiplier.

# **TEXT BOOKS:**

- Switching and Finite Automata Theory- Zvi Kohavi & Niraj K. Jha, 3<sup>rd</sup> Edition, Cambridge.
- 2. Digital Design- Morris Mano, PHI, 3<sup>rd</sup> Edition.

#### **REFERENCE BOOKS:**

- Introduction to Switching Theory and Logic Design Fredriac J. Hill, Gerald R. Peterson, 3<sup>rd</sup> Ed, John Wiley & Sons Inc.
- Digital Fundamentals A Systems Approach Thomas L. Floyd, Pearson, 2013.
- 3. Digital Logic Design Ye Brian and HoldsWorth, Elsevier.
- 4. Fundamentals of Logic Design- Charles H. Roth, Cengage LEanring, 5<sup>th</sup>, Edition, 2004.
- 5. Digital Logic Applications and Design- John M. Yarbrough, Thomson Publications, 2006.
- 6. Digital Logic and State Machine Design Comer, 3<sup>rd</sup>, Oxford, 2013.

# **Course Outcomes:**

Upon completion of the course, students should possess the following skills:

- Be able to manipulate numeric information in different forms, e.g. different bases, signed integers, various codes such as ASCII, gray, and BCD.
- Be able to manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Be able to design and analyse small combinational circuits and to use standard combinational functions/building blocks to build larger more complex circuits.
- Be able to design and analyse small sequential circuits and devices and to use standard sequential functions/building blocks to build larger more complex circuits.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

II Year B.Tech. EIE-I Sem

# L T/P/D C

4 -/-/- 4

### (A31001) TRANSDUCTION OF PHYSICAL VARIABLES

**Course Objective:** To provide basic knowledge in transduction principles, sensors, transducer technology and measurement systems.

UNIT-I:

**Introduction to measurement systems:** general concepts and terminology, measurement systems, sensor classification, general input-output configuration, methods of correction. static characteristics of measurement systems- accuracy, linearity, resolution, precision and sensitivity etc. estimation of errors.

**Standards**. Definition of standard units. International standards. Primary standards. Secondary standards. Working standards. Voltage standard. Resistance standard. Current standard. Capacitance standard. Time and frequency standards.

# UNIT-II:

**Dynamic characteristics:** Transfer function, dynamic characteristics of measurement systems: zero-order, first-order, and second-order measurement systems and response.

#### UNIT-III:

**Measuring devices: Temperature :** Thermal expansion methods, Thermo electric, electrical resistance and semiconductor sensors. Radiation methods-thermal and photon detectors based thermometers.

**Measuring devices: Pressure :** Methods of pressure measurement: Dead weight gauges and manometers, elastic transducers, vibrating cylinder and other resonant transducers. Testing of pressure measuring system. High pressure measurement.

#### UNIT-IV:

**Measuring devices: Vacuum and sound :** Diaphragm, McLeod, Knudsen, viscosity, thermal conductivity and ionization gauges. Dual gauge techniques. Sound measurement.

**Measuring devices: Local Flow:** Flow Visualization from Pitot –Static Tube, Yaw Tube, Pivoted Vane and Servoed Sphere, wind vector indicator, Anemometers, Velocity sensors.

# UNIT-V:

**Measuring devices: Gross Volume Flow:** Obstruction meters, averaging Pitot tubes, Rotameters, Turbine and Positive Displacement meters, electromagnetic, Drag force, Vortex shedding, Ultrasonic Flow meters.

# **TEXT BOOK:**

- Measurement System : Applications and Design by E.O. Doeblin, D.N.Manik,5<sup>th</sup> ed. McGraw Hill Publications.
- 2. Modern Electronic Instrumentation & Measurement Techniques : Albert D. Helfrick & William D. Cooper, PHI.

# **REFERENCES**:

- 1. Sensor Technology Handbook Jon Wilson, Newne 2004.
- 2. Introduction to measurements and Instrumentation- by Arun .K. Ghoshl, 2nd Edition, PHI, 2007.
- 3. Sensors and Transducers D.Patranabis, TMH 2003.

# Course Outcome :

Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | - | -/3/- | 2 |

(A30482) ELECTRONIC DEVICES AND CIRCUITS LAB

#### PART A: (Only for Viva-voce Examination)

## Electronic Workshop Practice (In 3 Lab Sessions):

- Identification, Specifications, Testing of R, L, C Components (Color Codes), Potentiometers, Switches (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Boards, PCB's.
- 2. Identification, Specifications and Testing of Active Devices, Diodes, BJT's, Low power JFET's, MOSFET's, Power Transistors, LED's, LCD's, SCR, UJT.
- 3. Study and operation of
  - i. Multimeters (Analog and Digital)
  - ii. Function Generator
  - iii. Regulated Power Supplies
  - iv. CRO.

#### PART B: (For Laboratory Examination – Minimum of 10 experiments)

- 1. Forward & Reverse Bias Characteristics of PN Junction Diode.
- 2. Zener diode characteristics and Zener as voltage Regulator.
- 3. Input & Output Characteristics of Transistor in CB Configuration and h-parameter calculations.
- 4. Input & Output Characteristics of Transistor in CE Configuration and h-parameter calculations.
- 5. Half Wave Rectifier with & without filters.
- 6. Full Wave Rectifier with & without filters.
- 7. FET characteristics.
- 8. Design of Self-bias circuit.
- 9. Frequency Response of CC Amplifier.
- 10. Frequency Response of CE Amplifier.
- 11. Frequency Response of Common Source FET amplifier .
- 12. SCR characteristics.
- 13. UJT Characteristics

## PART C: Equipment required for Laboratories:

1. Regulated Power supplies (RPS) -0-30 V

| 2. | CRO's                          | -0-20 MHz.                                       |
|----|--------------------------------|--------------------------------------------------|
| 3. | Function Generators            | -0-1 MHz.                                        |
| 4. | Multimeters                    |                                                  |
| 5. | Decade Resistance Boxes/Rheos  | tats                                             |
| 6. | Decade Capacitance Boxes       |                                                  |
| 7. | Ammeters (Analog or Digital)   | -0-20 μΑ, 0-50μΑ, 0-100μΑ, 0-<br>200μΑ, 0-10 mΑ. |
| 8. | Voltmeters (Analog or Digital) | -0-50V, 0-100V, 0-250V                           |
| 9. | Electronic Components          | -Resistors, Capacitors, BJTs,                    |

-Resistors, Capacitors, BJTs, LCDs, SCRs, UJTs, FETs, LEDs, MOSFETs, Diodes- Ge & Si type, Transistors – NPN, PNP type)

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | - | -/3/- | 2 |

# (A30283) ELECTRICAL ENGINEERING LAB

- 1. Verification of KVL and KCL.
- 2. Serial and Parallel Resonance.
- 3. Time response of first order RC/RL network for periodic non-sinusoidal inputs time constant and steady state error determination.
- 4. Verification of Superposition theorem.
- 5. Verification of Reciprocity theorem.
- 6. Verification of maximum power transfer theorem.
- 7. Verification of Thevenin's theorem.
- 8. Verification of compensation theorem.
- 9. Verification of Milliman's theorem.
- 10. Verification of Norton's theorem.
- 11. Magnetization characteristics of D.C. Shunt generator.
- 12. Swinburne's Test on DC shunt machine.
- 13. Brake test on DC shunt motor.
- 14. OC & SC tests on Single-phase transformer.
- 15. Load Test on Single Phase Transformer.

Note: Any 12 of the above experiments are to be conducted.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

#### (A40009) ENVIRONMENTAL STUDIES

#### **Objectives:**

- 1. Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures.
- 3. Understanding the environmental policies and regulations.

#### UNIT-I:

**Ecosystems:** Definition, Scope and Importance of ecosystem. Classification, structure and function of an ecosystem, Food chains, food webs and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

# UNIT-II:

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

# UNIT-III:

**Biodiversity and Biotic Resources:** Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

#### UNIT-IV:

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and

characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems And Global Efforts: C**limate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol and Montréal Protocol. **UNIT-V:** 

## Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

## SUGGESTED TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

# **REFERENCE BOOKS:**

- 1. Environmental Science: towards a sustainable future by Richard T.Wright. 2008 PHL Learning Private Ltd. New Delhi.
- Environmental Engineering and science by Gilbert M.Masters and Wendell P. Ela .2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B.Botkin & Edward A.Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4<sup>th</sup> Edition, New age international publishers.
- Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.

#### **Outcomes:**

Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which inturn helps in sustainable development.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

# (A40414) PRINCIPLES OF COMMUNICATIONS

**Course Objective:** To provide the basic concepts of communication systems. **UNIT-I** 

Introduction : Block diagram of Electrical communication system, Radio communication : Types of communications, Analog, pulse and digital Types of signals, Noise – Types of noise, sources of noise, calculation of noise in Linear systems, and noise figure.

#### UNIT-II

Amplitude Modulation : Need for modulation, Types of Amplitude modulation, AM, DSB SC, SSB SC, Power and BW requirements, generation of AM, DSB SC, SSB SC, Demodulation of AM : Diode detector, Product demodulation for DSB SC & SSB SC.

Angle Modulation : Frequency & Phase modulations, advantages of FM over AM, Bandwidth consideration, Narrow band and Wide band FM, Comparison of FM & PM.

## UNIT- III

Pulse Modulations : Sampling, Nyquist rate of sampling, Sampling theorem for Band limited signals, PAM, regeneration of base band signal, PWM and PPM, Time Divison Multiplexing, Frequency Divison Multiplexing, Asynchronous Multiplexing.

# UNIT- IV

Digital Communication : Advantages, Block diagram of PCM, Quantization, effect of quantization, quantization error, Base band digital signal, DM, ADM, ADPCM and comparison.

Digital Modulation : ASK, FSK, PSK, DPSK, QPSK demodulation, coherent and incoherent reception, Modems.

# UNIT-V

Information Theory : Concept of information, rate of information and entropy, Source coding for optimum rate of information, Coding efficiency, Shanon-Fano and Huffman coding.

Error control coding : Introduction, Error detection and correction codes, block codes, convolution codes.

# **TEXT BOOKS:**

 Communication Systems Analog and Digital – R.P. Singh and SD Sapre, TMH, 20<sup>th</sup> reprint, 2004.

2. Principles of Communications – H. Taub and D. Schilling, TMH, 2003. **REFERENCES:** 

- 1. Electronic Communication Systems Kennedy and Davis, TMH, 4th edition, 2004.
- 2. Communication Systems Engineering John. G. Proakis and Masoud Salehi, PHI, 2nd Ed. 2004.

## Course Outcome:

On successful completion of the module students will be able to...

- explain the main concepts of analogue and digital communication systems;
- analyze and design an AM and FM modulator/demodulator;
- explain, discuss, and compare different binary digital modulation techniques;
- explain types of noise & effects of noise on communication system.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

# II Year B.Tech. EIE-II Sem

| B.Tech. EIE-II Sem | L | T/P/D | С |
|--------------------|---|-------|---|
|                    | 4 | -/-/- | 4 |

#### (A40412) ELECTRONIC CIRCUIT ANALYSIS

#### **Course Objective:**

The main objective of the course is:

To familiarize the student with the analysis and design of basic transistor amplifier circuits and their frequency response characteristics, feedback amplifiers, oscillators, large signal amplifiers and tuned amplifiers.

UNIT -I:

## Single Stage and Multi Stage Amplifiers

Single Stage Amplifiers: Classification of Amplifiers - Distortion in Amplifiers, Analysis of CE, CC, and CB Configurations with simplified Hybrid Model. Analysis of CE amplifier with Emitter Resistance and Emitter follower. Miller's Theorem and its dual, Design of Single Stage RC Coupled Amplifier using BJT.

Multi Stage Amplifiers: Analysis of Cascaded RC Coupled BJT amplifiers, Cascode Amplifier, Darlington Pair, Different Coupling Schemes used in Amplifiers - RC Coupled Amplifier, Transformer Coupled Amplifier, Direct Coupled Amplifier.

# UNIT -II:

#### **BJT Amplifiers and MOS Amplifiers**

BJT Amplifiers - Frequency Response: Logarithms, Decibels, General frequency considerations, Frequency response of BJT Amplifier, Analysis at Low and High frequencies, Effect of coupling and bypass Capacitors, The Hybrid- pi (n) - Common Emitter Transistor Model, CE Short Circuit Current Gain, Current Gain with Resistive Load, Single Stage CE Transistor Amplifier Response, Gain-Bandwidth Product, Emitter follower at higher frequencies.

MOS Amplifiers [3]: Basic concepts. MOS Small signal model. Common source amplifier with Resistive load.

## UNIT -III:

# Feedback Amplifiers and Oscillators

Feedback Amplifiers: Concepts of Feedback, Classification of Feedback Amplifiers, General characteristics of Negative Feedback Amplifiers, Effect of Feedback on Amplifier Characteristics, Voltage Series, Voltage Shunt, Current Series and Current Shunt Feedback Configurations, Illustrative Problems.

**Oscillators:** Classification of Oscillators, Conditions for Oscillations, RC Phase Shift Oscillator, Generalized analysis of LC oscillators - Hartley, and Colpitts Oscillators, Wien-Bridge & Crystal Oscillators, Stability of Oscillators. **UNIT –IV:** 

**Large Signal Amplifiers** Classification, Class A Large Signal Amplifiers, Transformer Coupled Class A Audio Power Amplifier, Efficiency of Class A Amplifier, Class B Amplifier, Efficiency of Class B Amplifier, Class-B Push-Pull Amplifier, Complementary Symmetry Class B Push-Pull Amplifier, Distortion in Power Amplifiers, Thermal Stability and Heat Sinks.

#### UNIT –V:

**Tuned Amplifiers** Introduction, Q-Factor, Small Signal Tuned Amplifiers, Effect of Cascading Single Tuned Amplifiers on Bandwidth, Effect of Cascading Double Tuned Amplifiers on Bandwidth, Stagger Tuned Amplifiers, Stability of Tuned Amplifiers.

# **TEXT BOOKS:**

- 1. Integrated Electronics Jacob Millman and Christos C Halkias, 1991 Ed., 2008, TMH.
- 2. Electronic Devices and Circuits, B. P. Singh, Rekha Singh, Pearson, 2013.
- Design of Analog CMOS Integrated Circuits Behzad Razavi, 2008, TMH.

## **REFERENCE BOOKS:**

- 1. Electronic Circuit Analysis Rashid, Cengage Learning, 2013.
- Electronic Devices and Circuit Theory Robert L.Boylestad, Louis Nashelsky, 9 Ed., 2008 PE.
- Microelectric Circuits Sedra and Smith 5 Ed., 2009, Oxford University Press.
- Electronic Circuit Analysis K. Lal Kishore, 2004, BSP.
- 5. Electronic Devices and Circuits S. Salivahanan, N.Suresh Kumar, A Vallavaraj, 2 Ed., 2009, TMH.

#### **Course Outcomes:**

Upon completion of the subject, students will be able to:

- Design and analyse the DC bias circuitry of BJT and FET.
- Analyse the different types of amplifiers, operation and its characteristics.
- Design circuits like amplifiers, oscillators using the transistors diodes and oscillators.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| II Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

#### (A40417) STRUCTURED DIGITAL SYSTEM DESIGN

Course Objective: To provide the basic concepts of digital system design. UNIT- I

Introduction, Concepts of digital design, the logic operators, Hardware Aspects related to asserted and not-asserted conditions, Mechanical switches for signal sources, Concept of inverter, General Implementation procedures, Arithmetic circuits, comparators(7485), multiplexers(74151 IC), Code converters.

# UNIT- II

Wired logic, Practical aspects of Wired logic and Bus-oriented Structures, Tristate Bus Systems, Practical aspects related to Combinational Logic Design, Fan-in Fan-out, Propagation Delay.

# UNIT- III

Introduction Sequential Machine Design, The need for sequential Circuits, Basic Architectural Distinctions between Combinational and Sequential Circuits, Fundamental differences between Sequential machines, Fundamentals of Sequential Machine operation, Clock and Oscillators, The design of a Clocked Flip-Flop (D-FlipFlop 7474 IC, JK-Flip-flop 7483 IC), Flip-Flop conversion from one type to another, Practical clocking Aspects Concerning Flip-Flops, Timing and Triggering Considerations, Clock Skew.

# UNIT- IV

Introduction Sequential Analysis and Design, The State Diagram, Analysis of Synchronous Sequential Circuits, A Synchronous Analysis Process, Approaches to the Design of Synchronous Sequential Finite State machines, Design steps For Traditional Synchronous sequential circuits, State Reduction, Minimizing the next door Decoders with JK or T Flip-Flop, Output Decoder Design.

# UNIT-V

Counters, Design of Single - Mode Counters, Decade Counter (IC 7490), Up-Down counter (IC 74963), Design of Specialized Multi-mode Counters, Ripple Counters, Shift Register, Shift Registers (Universal Shift Register IC 74194 / 195) and Memory.

# **TEXT BOOKS:**

- 1. An Engineering Approach to Digital Design by William I. Fletcher, Prentice-Hall of India Pvt. Ltd.
- Digital .Design Morris Mano, Michel D. Ciletti –Pearson , 5<sup>th</sup> Edition 2013.

# **REFERENCES:**

- 1. Digital Systems Testing & Testable Design –Miron Abramoviu, Melvin A. Breuer and Arthur D.Friedman-Jaico Books.
- 2. Switching & Finite Automata Theory. Z.Kohavi, Jha, 2nd Edition. Cambridge.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| II Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

#### (A41002) TRANSDUCERS AND INSTRUMENTATION

**Course Objective:** To provide familiarity with different sensors and their application in real life.

UNIT – I:

**Measuring devices- Displacement:** Resistive Potentiometer, Resistive strain gauges. Differential Transformers, Inductive displacement transducer, capacitive displacement transducers, Piezo electric transducers. Ultrasonic methods.

**Measuring devices- Velocity and Acceleration:** Differentiation and Integration methods laser based and stroboscopic methods, Electro magnetic methods. Seismic displacement, velocity and acceleration pickups (Accelerometers).Gyroscopic angular displacement and velocity sensors.

## UNIT – II:

**Measuring devices: Force and Torque:** methods of force measurement and characteristics. Bonded strain gauge, Differential Transformers, Variable reluctance, Piezo electric transducer types. Torque measuring on rotating shafts.

# UNIT – III:

**Voltage and current measurements:** DC & AC voltage measurements using Rectifier, Thermocouple & Electronic voltmeters, Ohm meter, Digital Voltmeters, Range Extension of Ammeters & Voltmeter.

**Bridges:** AC Bridges – measurement of inductance, Maxwell's bridge, Anderson bridge, measurement of capacitance, Schering bridge, measurement of impedance – Kelvin's bridge, Wheat Stone bridge, HF bridges, Q-meter.

# UNIT - IV

**Frequency Counters:** Basic Principle, errors associated with counter, Different modes of operations: Frequency, Time, Time Period, Average time period, Totalizing, Frequency synthesizer, Wave meters, Wave Analyzers, Output Power meter.

Humidity measurement: Capacitive Impedance and Piezoelectric Hygrometers. Density measurement: Differential Pressure, U-tube and ultrasonic Densitometers. pH measurement: Ion Selective Type.

# UNIT – V

**Data transmission:** cable, fiber optics, Radio Telemetry, Synchro Position Repeater. Rotary Transformers. Instrument connectivity.

**Data Transmission and Instrument Connectivity**: Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber – optic Data Transmission, Radio – Telemetry, Pneumatic Transmission, Synchro Position Repeater Systems, Slip Rings and Rotary Transformers, Instrument Connectivity.

# **TEXT BOOKS:**

- 1. Electronic Instrumentation HS Kalsi, Tata Mc Graw Hill, 2004.
- Measurement System : Applications and Design by E.O. Doeblin, D.N.Manik,5<sup>th</sup> ed. McGraw Hill Publications.

# **REFERENCES:**

- 1. Electrical and Electronic Measurements by Shawney, Khanna Publ.
- Electronic Instrumentation and measurements by David A. Bell, 2nd Edition, PHI, 2003.
- 3. M.M.S. Anand: Electronic instruments and instrumentation Technology, Prentice-Hall of India, 2004.

# Course Outcome:

Upon completion of this course the student shall be able to understand the working of basic sensors and transducers used in any industries.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

## (A40211) CONTROL SYSTEMS

#### **Objective:**

In this course it is aimed to introduce to the students the principles and applications of control systems in everyday life. The basic concepts of block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in frequency domain and time domain.

# UNIT – I:

**Introduction:** Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different examples of control systems-Classification of control systems, Feed-Back Characteristics, Effects of feedback.

Mathematical models – Differential equations, Impulse Response and transfer functions - Translational and Rotational mechanical systems.

## UNIT II:

**Transfer Function Representation:** Transfer Function of DC Servo motor -AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples -Block diagram algebra – Representation by Signal flow graph - Reduction is using Mason's gain formula.

### UNIT-III:

**Time Response Analysis** Standard test signals - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants – Effects of proportional derivative, proportional integral systems.

#### UNIT – IV:

**Stability Analysis in S-Domain:** The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability.

**Root Locus Technique:** The root locus concept - construction of root locieffects of adding poles and zeros to G(s)H(s) on the root loci. Basics of PID controllers.

# UNIT – V:

Frequency Response Analysis: Introduction, Frequency domain

specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

# **TEXT BOOKS:**

- 1. Control Systems theory and applications, S.K Bhattacharya, Pearson.
- 2. Control Systems, N.C.Jagan, BS Publications.

#### **REFERENCE BOOKS:**

- 1. Control systems, A.Ananad Kumar, PHI.
- 2. Control Systems Engineering, S.Palani, Tata-McGraw-Hill.
- 3. Control systems, Dhanesh N.Manik, Cengage Learning.
- Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International (P) Limited, Publishers.
- Control Systems, N.K.Sinha, New Age International (P) Limited Publishers.

## Outcome:

After going through this course the student gets a thorough knowledge on open loop and closed loop control systems, concept of feedback in control systems, mathematical modeling and transfer function derivations of translational and rotational systems, Transfer functions of Synchros, AC and DC servo motors, Transfer function representation through block diagram algebra and signal flow graphs, time response analysis of different ordered systems through their characteristic equation and time-domain specifications, stability analysis of control systems in S-domain through R-H criteria and root-locus techniques, frequency response analysis through bode diagrams, with which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| II Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | - | -/3/- | 2 |

# (A40483) ELECTRONIC CIRCUIT ANALYSIS LAB

List of Experiments (12 experiments to be done) :

- I) Design and Simulation in Simulation Laboratory using any Simulation Software (Any 6 Experiments):
- 1. Common Emitter Amplifier
- 2. Common Source Amplifier
- 3. Two Stage RC Coupled Amplifier
- 4. Current shunt and Voltage Series Feedback Amplifier
- 5. Cascode Amplifier
- 6. Wien Bridge Oscillator using Transistors
- 7. RC Phase Shift Oscillator using Transistors
- 7. Class A Power Amplifier (Transformer less)
- 9. Class B Complementary Symmetry Amplifier
- 10. Common Base (BJT) / Common Gate (JFET) Amplifier.
- II) Testing in the Hardware Laboratory (6 Experiments)
- A) Any Three circuits simulated in Simulation laboratory
- B) Any Three of the following:
- 1. Class A Power Amplifier (with transformer load)
- 2. Class C Power Amplifier
- 3. Single Tuned Voltage Amplifier
- 4. Hartley & Colpitt's Oscillators
- 5. Darlington Pair
- 6. MOS Common Source Amplifier

# Equipment required for the Laboratory:

- 1. For software simulation of Electronic circuits
  - i) Computer Systems with latest specifications
  - ii) Connected in LAN (Optional)
  - iii) Operating system (Windows XP)
  - iv) Suitable Simulations software

- 2. For Hardware simulations of Electronic Circuits
  - i) Regulated Power Supply (0-30V)
  - ii) CRO's
  - iii) Functions Generators
  - iv) Multimeters
  - v) Components
- 3. Win XP/ Linux etc.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| ll Year B.Tech. EIE-ll Sem | L | T/P/D |
|----------------------------|---|-------|
|                            | - | -/3/- |

# (A41081) INSTRUMENTATION LAB - I

C 2

**Course Objective:** Hands on experience in Transducers and sensors. (Minimum TEN experiments should be performed)

- 1. Extension of Range of DC Ammeter, Voltmeter.
- 2. Extension of Range of AC Voltmeter, Ammeter.
- 3. Construction of Series & Shunt type Ohm meters using PMMC.
- 4. RLC and Q measurement using Q-meter.
- 5. Study of Strain gauges using any one application.
- 6. Measurement of temperature using RTD.
- 7. Measurement of linear displacement using LVDT.
- 8. Study of Capacitive transducers.
- 9. Measurement of Resistance Using Wheat stone Bridge / Kelvin Bridge.
- 10. Measurement of Capacitance Using Shearing Bridge.
- 11. Measurement of Inductance Using Maxwell's Bridge.
- 12. Characteristics of Opto Electric Transducers (Photo Transistor, Photo diode, LDR).
- 13. Piezoelectric transducers.
- 14. Bourdon tube.
- 15. Acceleration transducers.

# Course Outcome:

The students are expected to acquire practical knowledge of the transducer, both active and passive, used in any industry.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-I Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

# (A50010) MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS Objectives:

To enable the student to understand and appreciate, with a practical insight, the importance of certain basic issues governing the business operations namely: demand and supply, production function, cost analysis, markets, forms of business organisations, capital budgeting and financial accounting and financial analysis.

#### Unit I

**Introduction & Demand Analysis:** Definition, Nature and Scope of Managerial Economics. Demand Analysis: Demand Determinants, Law of Demand and its exceptions. *Elasticity of Demand*: Definition, Types, Measurement and Significance of Elasticity of Demand. *Demand Forecasting,* Factors governing demand forecasting, methods of demand forecasting.

## Unit II

**Production & Cost Analysis:** *Production Function* – Isoquants and Isocosts, MRTS, Least Cost Combination of Inputs, Cobb-Douglas Production function, Laws of Returns, Internal and External Economies of Scale. *Cost Analysis*: Cost concepts. Break-even Analysis (BEA)-Determination of Break-Even Point (simple problems) - Managerial Significance.

## Unit III

Markets & New Economic Environment: Types of competition and Markets, Features of Perfect competition, Monopoly and Monopolistic Competition. Price-Output Determination in case of Perfect Competition and Monopoly. *Pricing*: Objectives and Policies of Pricing. Methods of Pricing. *Business:* Features and evaluation of different forms of Business Organisation: Sole Proprietorship, Partnership, Joint Stock Company, Public Enterprises and their types, *New Economic Environment*. Changing Business Environment in Post-liberalization scenario.

#### Unit IV

**Capital Budgeting**: Capital and its significance, Types of Capital, Estimation of Fixed and Working capital requirements, Methods and sources of raising capital - Trading Forecast, Capital Budget, Cash Budget. Capital Budgeting: features of capital budgeting proposals, Methods of Capital Budgeting: Payback Method, Accounting Rate of Return (ARR) and Net Present Value Method (simple problems).

# Unit V

Introduction to Financial Accounting & Financial Analysis: Accounting concepts and Conventions - Introduction IFRS - Double-Entry Book Keeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). *Financial Analysis*: Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability ratios. Du Pont Chart.

## **TEXT BOOKS:**

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand, 2009.
- 2. S.A. Siddiqui & A.S. Siddiqui, Managerial Economics and Financial Analysis, New Age international Publishers, Hyderabad 2013.
- 3. M. Kasi Reddy & Saraswathi, Managerial Economics and Financial Analysis, PHI New Delhi, 2012.

#### **REFERENCES:**

- 1. Ambrish Gupta, Financial Accounting for Management, Pearson Education, New Delhi.2012.
- H. Craig Peterson & W. Cris Lewis, Managerial Economics, Pearson, 2012.
- 3. Lipsey & Chrystel, Economics, Oxford University Press, 2012.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Thomson, 2012.
- 5. Narayanaswamy: Financial Accounting—A Managerial Perspective, Pearson, 2012.
- 6. S.N.Maheswari & S.K. Maheswari, Financial Accounting, Vikas, 2012.
- 7. Truet and Truet: Managerial Economics: Analysis, Problems and Cases, Wiley, 2012.
- 8. Dwivedi: Managerial Economics, Vikas, 2012.
- 9. Shailaja & Usha : MEFA, University Press, 2012.
- 10. Aryasri: Managerial Economics and Financial Analysis, TMH, 2012.
- 11. Vijay Kumar & Appa Rao, Managerial Economics & Financial Analysis, Cengage 2011.
- 12. J. V. Prabhakar Rao & P.V. Rao, Managerial Economics & Financial Analysis, Maruthi Publishers, 2011.

# Outcomes:

At the end of the course, the student will

- Understand the market dynamics namely, demand and supply, demand forecasting, elasticity of demand and supply, pricing methods and pricing in different market structures.
- Gain an insight into how production function is carried out to achieve least cost combination of inputs and cost analysis.
- Develop an understanding of
- Analyse how capital budgeting decisions are carried out.
- Understand the framework for both manual and computerised accounting process.
- Know how to analyse and interpret the financial statements through ratio analysis.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-I Sem | L |  |
|----------------------------|---|--|
|                            | 4 |  |

# -/-/- 4

С

T/P/D

#### (A50424) LINEAR IC APPLICATIONS

Course Objective: The main objectives of the course are:

- To introduce the basic building blocks of linear integrated circuits.
- To teach the linear and non linear applications of operational amplifiers.
- To introduce the theory and applications of PLL.
- To teach the theory of ADC and DAC.
- To introduce the concepts of waveform generation and introduce some special function ICs.

# UNIT- I

**Integrated Circuits :** Classification, chip size and circuit complexity, basic information of Opamp, ideal and practical Op-amp, internal circuits, Op-amp characteristics, DC and AC characteristics, 741 op-amp and its features, modes of operation-inverting, non-inverting, differential.

# UNIT- II

**OP-AMP Applications** : Basic application of Op-amp, instrumentation amplifier, ac amplifier, V to I and I to V converters, sample & hold circuits, multipliers and dividers, Differentiators and Integrators, Comparators, Schmitt trigger, Multivibrators, introduction to voltage regulators, features of 723.

# UNIT- III

Active Filters & Waveform Generators : Introduction, Active filters, First order Low-pass butterworth filter, First order High-pass butterworth filter, Band pass filters, Band reject filters, All pass filter, Phase Shift Oscillator, Wien Bridge Oscillator and Quadrature Oscillator, Square wave generator, Triangular wave generator, Sawtooth Wave generator.

#### UNIT- IV

**Special Function OP-AMP Based ICS :** The 555 timer, Monostable Multivibrator and its applications, Astable Multivibrator and its applications, Phase Locked Loops - Operating principles, Monolithic Phase Locked Loops and 565 PLL applications, Voltage Controlled Oscillators, Voltage Regulators.

### UNIT- V

**Data Converters and IC Systems**: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC. DAC and ADC

# specifications.

LED Temperature Indicator: Application of the V/F Converter and the 555 timer, Digital DC Motor Speed Control: Application of the D/A and F/V Converters, Appliance Timer: Application of the 555 Timers.

# **TEXT BOOKS** :

1. Op-Amps & Linear Integrated Circuits – Ramakanth A. Gayakwad, PHI, 4<sup>th</sup> Edition.

# **REFERENCES**:

- 1. Operational Amplifiers– George Clayton Steve Winder, Elsevier, 5<sup>th</sup> Edition, 2013.
- 2. Operational Amplifiers & Linear Integrated Circuits: David A.Bell, Oxford Higher Education, 3<sup>rd</sup> Edition, 2011.
- 3. Operational Amplifiers & Linear Integrated Circuits-Concepts & Applications-James M. Fiore, Cengage Learning, 2009.
- 4. Linear Integrated Circuits-Concepts & Applications-M.S.Suresh, S.B.Bhanu Prashanth, PRISM books Pvt. Ltd., 2011.

**Course Outcome:** On completion of this course, the students will have A thorough understanding of operational amplifiers with linear integrated circuits.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-I Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 1 | _/_/_ | 1 |

#### (A50415) PULSE AND DIGITAL CIRCUITS

#### **Objectives:**

The main objectives are:

- To explain the complete response of R-C and R-L-C transient circuits.
- To explain clippers, clampers, switching characteristics of transistors and sampling gates.
- To construct various multivibrators using transistors, design of sweep circuits and sampling gates.
- To discuss and realize logic gates using diodes and transistors.

## UNIT -I:

Linear Wave Shaping: High pass and low pass RC circuits and their response for Sinusoidal, Step, Pulse, Square, & Ramp inputs, High pass RC network as Differentiator, Low pass RC circuit as an Integrator, Attenuators and its application as a CRO Probe, RL and RLC Circuits and their response for Step Input, Ringing Circuit.

## UNIT -II:

**Non-Linear Wave Shaping**: Diode clippers, Transistor clippers, Clipping at two independent levels, Comparators, Applications of Voltage comparators. Clamping Operation, Clamping circuit taking Source and Diode resistances into account, Clamping Circuit Theorem, Practical Clamping Circuits, Effect of Diode Characteristics on Clamping Voltage, Synchronized Clamping.

# UNIT -III:

Switching Characteristics of Devices : Diode as a Switch, Piecewise Linear Diode Characteristics, Diode Switching times, Transistor as a Switch, Break down voltages, Transistor in Saturation, Temperature variation of Saturation Parameters, Transistor-switching times, Silicon-controlled-switch circuits, Sampling Gates : Basic operating principles of Sampling Gates, Unidirectional and Bi-directional Sampling Gates, Four Diode Sampling Gate, Reduction of pedestal in Gate Circuits.

# UNIT -IV:

**Multivibrators**: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors, Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, Miller and Bootstrap **Time Base Generators**-Basic Principles, Transistor Miller Time Base generator, Transistor Bootstrap Time Base

Generator, Transistor Current Time Base Generators, Methods of Linearity improvement.

# UNIT -V:

Synchronization and Frequency Division: Pulse Synchronization of Relaxation Devices, Frequency division in Sweep Circuit, Stability of Relaxation Devices, Astable Relaxation Circuits, Monostable Relaxation Circuits, Synchronization of a Sweep Circuit with Symmetrical Signals, Sine wave frequency division with a Sweep Circuit, A Sinusoidal Divider using Regeneration and Modulation. **Realization of Logic Gates Using Diodes & Transistors:** AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL and CML Logic Families and its Comparison.

#### **TEXT BOOKS:**

- 1. Millman's Pulse, Digital and Switching Waveforms –J. Millman, H. Tauba.
- 2. nd Mothiki S. Prakash Rao, 2 Ed., 2008, TMH.
- 3. Solid State Pulse Circuits David A. Bell, 4 Ed., 2002 PHI.

# **REFERENCE BOOKS:**

- 1. Pulse and Digital Circuits A. Anand Kumar, 2005, PHI.
- 2. Fundamentals of Pulse and Digital Circuits- Ronald J. Tocci, 3 Ed., 2008.
- 3. Pulse and Digital Circuits Motheki S. Prakash Rao, 2006, TMH.
- 4. Wave Generation and Shaping L. Strauss.

# Outcomes:

At the end of the course, the student will be able to:

- Understand the applications of diode as integrator, differentiator, clippers, clampler circuits.
- Learn various switching devices such as diode, transistor, SCR.
- Difference between logic gates and sampling gates.
- Design mutivibrators for various applications, synchronization techniques and sweep circuits.
- Realizing logic gates using diodes and transistors.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-I Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

#### (A50407) SIGNAL CONDITIONING CIRCUITS

**Course Objective:** To provide the basic knowledge of active and passive sensors and to understand the sensing, transduction and conditioning circuits associated with them.

# Unit-l

Signal Conditioning for Resistive Sensors: measurement of resistance, voltage dividers: Potentiometers, Applications to thermistors, Dynamic measurements, Amplifiers for voltage dividers, Wheatstone bridge: Balance and deflection measurements, Sensitivity and Linearity, Analog Linearization of resistivity sensor bridges, sensor bridge calibration and balance, Difference and average measurements and compensation, Power Supply of wheatstone bridges, Detection methods for Wheatstone bridges, Differential and Instrumentation Amplifiers : Differential amplifiers, Instrumentation amplifier based on two op amps and three amps, Interference: Interference types and reduction, Signal Circuit grounding, Shield Grounding, Isolation Amplifiers.

## Unit-ll

**Signal Conditioning for Reactance Variation Sensors :** Problems and alternatives, ac bridges, Sensitivity and linearity, Capacity bridge analog linearization, ac amplifiers and power supply decoupling, Electrostatic shields and driven shields, ac/dc signal converters, Carrier Amplifiers and Coherent Detection : Fundamentals and structure of carrier amplifiers, Phase – sensitive detectors, Application to LVDTs.

Carrier Amplifiers and Coherent Detection : Fundamentals and structure of carrier amplifiers , Phase – sensitive detectors, application to the LVDTs, Specific Signal Conditioners for Capacitive Sensors, Resolver-to-Digital and Digital-to-Resolver Converters, Synchro-to-resolver converters, Digital-to-resolver converters, Resolver-to-digital converters.

## UNIT-III

Signal Conditioning for Self-Generating Sensors: chopper and low-drift amplifiers: Offset and drifts in op amps, Chopper amplifiers, Auto zero amplifiers, Composite amplifiers, offset and drifts in instrumentation amplifiers, Electrometer and Transimpedance Amplifiers, Current measurement by integration, Cautions in designing electrometer circuits ,charge Amplifiers, Noise in Amplifiers: Noise fundamentals, Noise in Op amps, noise in transimpedance amplifiers, noise in charge amplifiers, noise in instrumentation amplifiers, Noise in Drift in Resistors, Drift in Resistors, Drift in adjustable resistors (potentiometers), Noise in resistors.

#### Unit-IV

**Digital and Intelligent Sensors:** position encoders : incremental position encoders, Absolute position encoders, Resonant sensors : Sensors based on quartz resonators , SAW Sensors, vibrating wire strain gages, vibrating cylinder sensors, digital flow meters, variable oscillators : Sinusoidal oscillators , relaxation Oscillators, Variable CMOS Oscillators, Linearity in Variable Oscillators, Conversion to Frequency , period , ort Time Duration , Voltage –to-frequency conversion , Direct quantity –to-frequency conversion, Direct quantity to time duration conversion , Direct Sensor Microcontroller interfacing , frequency measurement , period and time interval measurement, calculations and compensations, velocity measurements , Digital tachometers, communication systems for sensors, current telemetry, simultaneous analog and digital communications, sensor buses : Field bus, Intelligent sensors.

## UNIT-V:

**Other Sensing Methods** : Sensors based on Semiconductor Junctions : Thermometers based on Semiconductor junctions : Magneto diodes, magneto transistors , photo diodes , position sensitive detectors , photo transistors , Semiconductor – junction nuclear radiation detectors , sensors based on MOSEFET transistors , charge coupled and CMOS Image Sensors: Fundamentals , Types of CCD and CMOS , imaging sensors and Applications, fiber optics sensors : fiber optic basics , fiber optic sensor technologies and applications , Ultra sonic based sensors : fundamentals of Ultrasonic based sensors , Ultra sonic based sensing methods and applications , Biosensors.

# TEXT BOOKS:

- Sensors and Signal Conditioning: Ramon Pallás Areny, John G. Webster; 2<sup>nd</sup> edition, John Wiley and Sons, 2000.
- Instrument Transducers, an introduction to their performance and design – Hermann K P Neubert. Oxford Publishers, 2<sup>nd</sup> edition.

## **REFERENCES:**

- 1. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- Instrument Transducers An Introduction to their Performance and design – by Herman K.P.Neubrat, Oxford University Press.

- 3. Measurement system: Applications and Design by E.O.Doeblin, McGraw Hill Publications.
- 4. Process Control Instrumentation Technology D. Johnson, John Wiley and sons.
- 5. Electronic Instrumentation by H.S.Kalsi.

# Course Outcome:

Upon completion of this course students shall be able to design signal conditioners based on the type of sensors used.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## III Year B.Tech. EIE-I Sem

# L T/P/D C

4 -/-/- 4

### (A50456) ELECTRONIC INSTRUMENTATION

**Course Objective:** To provide the knowledge required to understand and analyze the Instruments used for measurement of various electrical parameters.

# Unit-I

**Sine-Wave Testing of Linear Systems:** Mathematical Background, Gain or Loss Measurement, The Measurement of Phase, Automatic Network Analyzers, Measurement of Delay Distortion, The Measurement of Loop Gain, The Measurement of Nonlinearity, Precautions in Sine-wave Testing.

Square-Wave and Pulse Testing of Linear Systems: Tools and Techniques, Relations between Transient and Sinusoidal Responses, Response to Generalized Inputs, Effect of Low-end Cutoffs on Square-wave Response, Time-domain Reflectometry.

# Unit-ll

**Direct-Current Instrument Amplifiers:** Direct-current Amplifier Considerations, Direct-current Amplifier with Automatic Reset, Differential Amplifiers, Chopper Amplifiers.

# Unit-III

Voltage and Current Measurements: Introduction to DVMs, Non-integrating Types of DVMs, Digital Voltmeters with Counting Circuitry, Normal-mode Rejection, Common-mode Rejection, Principles of AC Voltage Measurements, Average-responding Detectors, Peak-responding Detectors, Peak-to-peak Detection, Root-mean-square—responding Detectors, Other Detection Methods, Sampling Voltmeters, Synchronous Detection, Directcurrent Probes, Alternating-current Probe.

#### Unit-IV

**Impedance Measurement:** Definitions and Formulas, Components and Standards –Resistors, Capacitors, Inductors, Meter Methods to Measure Impedance -Direct—current meter, Capacitance and Inductance Meters, Complex Impedance Meters, Resistance and Impedance Comparators, Direct-current Bridges-The Wheatstone Bridge, Measurement of Low-valued Resistors, Measurement of High-valued Resistance.

#### Unit-V

Low-frequency Bridges- General, Classification of Four-arm Bridges, Bridges with Inductively Coupled Ratio Arms, Special-purpose Bridges, Automatic and Semiautomatic Bridges, Radio-frequency Impedance Measurements,

Problems at Radio Frequency, Radio-frequency Bridges, T Networks, Resonance Methods, The RF Meter Methods, Precision Measurements-Standardization of Impedance Unit, Methods of Precision Measurements.

**Measurements on Transmitters and Receivers :** General-performance Characteristics, Basic Measurements, Special System Measurements, Measurements on Receiving Systems, Sinad Sensitivity, Modulationacceptance Bandwidth, Correlation of Sensitivity with Noise Figure, Automatic-gain-control Characteristics, Measurements on Transmitting Systems, Radio Equipment Specifications, Microwave Transistor Oscillators, Solid-state Microwave Amplifiers, Other Solid-state Microwave Sources.

#### **TEXT BOOKS:**

- 1. Electronic Measurement and Instrumentation –Oliver and Cage TMH.
- Electronic Instrumentation and Measurements David A. Bell— Oxford- 2<sup>nd</sup> Edition.

## **REFERENCE BOOKS:**

- 1. Principles of measurement systems, John P. Bentley: 3rd edition, Addison Wesley Longman, 2000.
- 2. Measuring Systems, Application and Design : E.O. Doebelin, McGraw Hill.
- 3. Electrical and Electronic Measurements : Shawney, Khanna Publ.
- 4. Electronic Instrumentation and measurements : David A. Bell, 2nd Edition,PHI, 2003.
- 5. Electronic instruments and instrumentation Technology, M.M.S. Anand: Prentice-Hall of India, 2004.

## **Course Outcome:**

The student is expected to apply the knowledge that they acquired during their course in EDC, ECA and PDC to study and design electronic instruments.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. EIE-I Sem

- L. T/P/D С 4
  - 4 -/-/-

### (A51003) VIRTUAL INSTRUMENTATION

Course Objective: To introduce LabVIEW programming and simulation of real time applications like instrument control, Signal processing, image processing, Data acquisition etc.,

#### UNIT- I

Virtual Instrumentation: An introduction Historical perspective, advantages, block diagram and architecture of a virtual instrument, dataflow techniques, graphical programming in data flow, comparison with conventional programming. Development of Virtual Instrument using GUI, Real-time systems.

#### UNIT- II

VI programming techniques: VIs and sub-VIs, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Instrument Drivers, Publishing measurement data in the web.

# UNIT- III

Data acquisition basics: Introduction to data acquisition on PC, Sampling fundamentals, Input/Output techniques and buses. ADC, DAC, Digital I/O, counters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements.

# UNIT- IV

VI Interface requirements: Common Instrument Interfaces: Current loop, RS 232C/ RS485, GPIB. Bus Interfaces: USB, PCMCIA, VXI, SCSI, PCI, PXI, Firewire. PXI system controllers, Ethernet control of PXI. Networking basics for office & Industrial applications, VISA and IVI.

#### UNIT- V

VI toolsets: Distributed I/O modules. Application of Virtual Instrumentation: Instrument Control, Development of process database management system, Simulation of systems using VI. Development of Control system, Industrial Communication, Image acquisition and processing, Motion control.

# **TEXTBOOKS**

- 1. LabVIEW Graphical Programming, Gary Johnson, Second edition, McGraw Hill, Newyork, 1997.
- 2. LabVIEW based Advanced Instrumentation Systems, S. Sumathi and P. Surekha, Spinger.

#### REFERENCES

- 1. PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Kevin James, Newnes, 2000.
- 2. WEB RESOURCES: www.ni.com
- 3. LabVIEW for everyone, Lisa K. wells & Jeffrey Travis Prentice Hall, New Jersey, 1997.

## **Course Outcome:**

Upon completion of this course the student shall be able to develop their own GSD and interface them with real world instruments.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

## III Year B.Tech. EIE-I Sem

T/P/D С L -/3/-2

-

# (A50490) LINEAR IC APPLICATIONS LAB

To perform any Twelve experiments

- 1. Inverting and non-inverting amplifier using op-amp.
- 2. OP AMP Applications - Adder, Subtractor, Comparator Circuits.
- 3. Integrator Circuit using IC 741.
- 4. Logarithmic amplifier using IC 741.
- 5. Differentiator Circuit using IC 741.
- First order Low Pass Filter. 6.
- 7. First order High Pass Filter.
- IC 741 Oscillator Circuits Phase Shift and Wien Bridge Oscillators. 8.
- 9. IC 555 Timer - Monostable Operation Circuit.
- 10. Schmitt Trigger Circuits - using IC 741.
- 11. IC 565 - PLL Applications.

Voltage Regulator using IC 723, Three Terminal Voltage Regulators -7805, 7809, 7912.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-I Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | - | -/3/- | 2 |

#### (A51082) INSTRUMENTATION LAB - II

**Course Objective:** To provide better familiarity with the Theoretical concepts studied.

(Minimum of Twelve experiments should be conducted.)

- 1. Design and simulation of Analog Circuits using CAD Package.
- 2. Design of PCBs using Packages and Fabrication of PCB.
- 3. Linearization of Thermistor.
- 4. Study of Level monitoring Instruments using PLC.
- 5. Measurement of Blood Pressure.
- 6. Measurement of EGG.
- 7. Calibration of P to I and I to P converters.
- 8. RPM indicator using Stroboscope and Tachometer
- 9. Torque Measurement using Gyroscope.
- 10. Measurement of Humidity.
- 11. Measurement of fluid density.
- 12. Measurement of velocity of liquid using Ultrasonic (Doppler effect) method and also flow measurement.
- 13. Measurement of Level using Capacitance method/Transducer.
- 14. Displacement measurement using inductive pickup and capacitive pickup.
- 15. Measurement of Sound intensity.
- 16. PID Controller setup (Flow/Temp. Level).

## Course Outcome:

The student is expected to acquire the knowledge is instruments used in any industry and to learn latest simulation software to help his design.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-----------------------------|---|-------|---|
|                             | 4 | -/-/- | 4 |
|                             | _ |       |   |

#### (A60014) MANAGEMENT SCIENCE

#### **Objectives:**

This course is intended to familiarise the students with the framework for the managers and leaders available for understanding and making decisions relating to issues related organisational structure, production operations, marketing, Human resource Management, product management and strategy.

#### UNIT -I:

Introduction to Management and Organisation: Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory – Fayal's Principles of Management – Maslow's theory of Hierarchy of Human Needs – Douglas McGregor's Theory X and Theory Y – Hertzberg Two Factor Theory of Motivation - Leadership Styles, Social responsibilities of Management. Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation, Types and Evaluation of mechanistic and organic structures of organisation and suitability.

## UNIT -II:

**Operations and Marketing Management:** Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement – Business Process Reengineering (BPR) - Statistical Quality Control: control charts for Variables and Attributes (simple Problems) and Acceptance Sampling, TQM, Six Sigma, Deming's contribution to quality. Objectives of Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Stores Records – JIT System, Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on Product Life Cycle, Channels of distribution.

#### UNIT -III:

**Human Resources Management (HRM):** Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Placement, Wage and Salary Administration,

Promotion, Transfer, Separation, Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating – Capability Maturity Model (CMM) Levels – Performance Management System.

## UNIT -IV:

**Project Management (PERT/CPM):** Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

## UNIT -V:

**Strategic Management and Contemporary Strategic Issues:** Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Card as Contemporary Business Strategies.

# **TEXT BOOKS:**

- 1. Stoner, Freeman, Gilbert, *Management*, 6th Ed, Pearson Education, New Delhi, 2004.
- 2. P Vijaya Kumar, N. Appa Rao and Ashima B. Chhalill, Cengage Learning India, 2012.

#### **REFERENCE BOOKS:**

- 1. Kotler Philip and Keller Kevin Lane: Marketing Management, Pearson, 2012.
- 2. Koontz and Weihrich: Essentials of Management, McGraw Hill, 2012.
- 3. Thomas N.Duening and John M.Ivancevich Management—Principles and Guidelines, Biztantra, 2012.
- 4. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2012.
- 5. Samuel C.Certo: Modern Management, 2012.
- 6. Schermerhorn, Capling, Poole and Wiesner: Management, Wiley, 2012.
- 7. Parnell: Strategic Management, Cengage, 2012.
- 8. Lawrence R Jauch, R.Gupta and William F.Glueck: Business Policy and Strategic Management, Frank Bros.2012.
- 9. Aryasri: Management Science, McGraw Hill, 2012.

Outcomes: By the end of the course, the student will be in a position to

- Plan an organisational structure for a given context in the organisation.
- carry out production operations through Work study.
- understand the markets, customers and competition better and price the given products appropriately.
- ensure quality for a given product or service.
- plan and control the HR function better.
- plan, schedule and control projects through PERT and CPM.
- evolve a strategy for a business or service organisation.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

С 4

| III Year B.Tech. EIE-II Sem | L | T/P/D |
|-----------------------------|---|-------|
|                             | ٨ | _/_/_ |

#### (A60117) DISASTER MANAGEMENT

#### (Open Elective)

#### Unit-I

Environmental Hazards & Disasters: Meaning of Environmental hazards, Environmental Disasters and Environmental stress. Concept of Environmental Hazards, Environmental stress & Environmental Disasters. Different approaches & relation with human Ecology - Landscape Approach - Ecosystem Approach - Perception approach - Human ecology & its application in geographical researches.

#### Unit –II

Types of Environmental hazards & Disasters: Natural hazards and Disasters - Man induced hazards & Disasters - Natural Hazards- Planetary Hazards/ Disasters - Extra Planetary Hazards/ disasters - Planetary Hazards-Endogenous Hazards - Exogenous Hazards –

# Unit –III

Endogenous Hazards - Volcanic Eruption – Earthquakes – Landslides - Volcanic Hazards/ Disasters - Causes and distribution of Volcanoes - Hazardous effects of volcanic eruptions - Environmental impacts of volcanic eruptions - Earthquake Hazards/ disasters - Causes of Earthquakes - Distribution of earthquakes - Hazardous effects of - earthquakes - Earthquake Hazards in India - Human adjustment, perception & mitigation of earthquake.

#### Unit –IV

Exogenous hazards/ disasters - Infrequent events- Cumulative atmospheric hazards/ disasters

Infrequent events: Cyclones - Lightning - Hailstorms

Cyclones: Tropical cyclones & Local storms - Destruction by tropical cyclones & local storms (causes, distribution human adjustment, perception & mitigation) Cumulative atmospheric hazards/ disasters : - Floods- Droughts-Cold waves- Heat waves Floods:- Causes of floods- Flood hazards India-Flood control measures (Human adjustment, perception & mitigation) Droughts:- Impacts of droughts- Drought hazards in India- Drought control measures- Extra Palnetary Hazards/ Disasters- Man induced Hazards / Disasters- Physical hazards/ Disasters-Soil Erosion.

Soil Erosion: — Mechanics & forms of Soil Erosion- Factors & causes of Soil Erosion- Conservation measures of Soil Erosion.

Chemical hazards/ disasters:— Release of toxic chemicals, nuclear explosion- Sedimentation processes Sedimentation processes:- Global Sedimentation problems- Regional Sedimentation problems- Sedimentation & Environmental problems- Corrective measures of Erosion & Sedimentation

Biological hazards/ disasters:- Population Explosion.

## Unit –V

Emerging approaches in Disaster Management- Three Stages

- 1. Pre- disaster stage (preparedness)
- 2. Emergency Stage
- 3. Post Disaster stage-Rehabilitation

## **TEXT BOOKS:**

- 1. Disaster Mitigation: Experiences And Reflections by Pardeep Sahni.
- Natural Hazards & Disasters by Donald Hyndman & David Hyndman

   Cengage Learning.

#### REFERENCES

- 1. R.B.Singh (Ed) Environmental Geography, Heritage Publishers New Delhi,1990.
- 2. Savinder Singh Environmental Geography, Prayag Pustak Bhawan, 1997.
- Kates,B.I & White, G.F The Environment as Hazards, oxford, New York, 1978.
- 4. R.B. Singh (Ed) Disaster Management, Rawat Publication, New Delhi, 2000.
- 5. H.K. Gupta (Ed) Disaster Management, Universiters Press, India, 2003.
- 6. R.B. Singh, Space Technology for Disaster Mitigation in India (INCED), University of Tokyo, 1994.
- Dr. Satender , Disaster Management t in Hills, Concept Publishing Co., New Delhi, 2003.
- 8. A.S. Arya Action Plan For Earthquake, Disaster, Mitigation in V.K. Sharma (Ed) Disaster Management IIPA Publication New Delhi, 1994.
- 9. R.K. Bhandani An overview on Natural & Man made Disaster & their Reduction,CSIR, New Delhi.
- 10. M.C. Gupta Manuals on Natural Disaster management in India, National Centre for Disaster Management,IIPA, New Delhi, 2001.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-----------------------------|---|-------|---|
|                             |   |       |   |

4 -/-/- 4

## (A60018) HUMAN VALUES AND PROFESSONAL ETHICS

## (Open Elective)

Objectives : This introductory course input is intended

- To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life, profession and happiness, based on a correct understanding of the Human reality and the rest of Existence. Such a holistic perspective forms the basis of Value based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behavior and mutually enriching interaction with Nature.

#### Unit I:

Course Introduction - Need, Basic Guidelines, Content and Process for Value Education: Understanding the need, basic guidelines, content and process for Value Education. Self Exploration–what is it? - its content and process; 'Natural Acceptance' and Experiential Validation- as the mechanism for self exploration. Continuous Happiness and Prosperity- A look at basic Human Aspirations. Right understanding, Relationship and Physical Facilities- the basic requirements for fulfillment of aspirations of every human being with their correct priority. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

## Unit II:

Understanding Harmony in the Human Being - Harmony in Myself! : Understanding human being as a co-existence of the sentient 'I' and the material 'Body'. Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer). Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail. Programs to ensure Sanyam and Swasthya.

#### Unit III:

Understanding Harmony in the Family and Society- Harmony in Human -

Human Relationship : Understanding harmony in the Family- the basic unit of human interaction. Understanding values in human-human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; **Trust** (Vishwas) and Respect (Samman) as the foundational values of relationship. Understanding the meaning of Vishwas; Difference between intention and competence. Understanding the meaning of Samman, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals. Visualizing a universal harmonious order in society- Undivided Society (Akhand Samaj), Universal Order (Sarvabhaum Vyawastha)- from family to world family!

## Unit IV:

Understanding Harmony in the Nature and Existence - Whole existence as Co-existence : Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sahastitva) of mutually interacting units in all-pervasive space. Holistic perception of harmony at all levels of existence.

#### Unit V:

Implications of the above Holistic Understanding of Harmony on Professional Ethics : Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics:

- a) Ability to utilize the professional competence for augmenting universal human order,
- b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems,
- c) Ability to identify and develop appropriate technologies and management patterns for above production systems.

Case studies of typical holistic technologies, management models and production systems. Strategy for transition from the present state to Universal Human Order:

- a) At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
- b) At the level of society: as mutually enriching institutions and organizations.

#### **TEXT BOOKS**

1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Human Values and Professional Ethics.

 Prof. KV Subba Raju, 2013, Success Secrets for Engineering Students, Smart Student Publications,3<sup>rd</sup> Edition.

# **REFERENCE BOOKS**

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and HarperCollins, USA.
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. A Nagraj, 1998, Jeevan Vidya ek Parichay, Divya Path Sansthan, Amarkantak.
- 4. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991.
- 5. PL Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Purblishers.
- 6. A.N. Tripathy, 2003, Human Values, New Age International Publishers.
- 7. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen(Vaidik) Krishi Tantra Shodh, Amravati.
- Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 9. E G Seebauer & Robert L. Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press.
- M Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethichs (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.

## Relevant CDs, Movies, Documentaries & Other Literature:

- 1. Value Education website, http://www.uptu.ac.in
- 2. Story of Stuff, http://www.storyofstuff.com
- 3. Al Gore, An Inconvenient Truth, Paramount Classics, USA
- 4. Charlie Chaplin, Modern Times, United Artists, USA
- 5 IIT Delhi, Modern Technology the Untold Story

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

C 4

| III Year B.Tech. EIE-II Sem | L | T/P/D |
|-----------------------------|---|-------|
|                             | 4 | -/-/- |

#### (A60117) INTELLECTUAL PROPERTY RIGHTS

#### (Open Elective)

#### UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

## UNIT – II

Trade Marks : Purpose and function of trade marks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

## UNIT – III

Law of copy rights : Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents : Foundation of patent law, patent searching process, ownership rights and transfer

#### UNIT – IV

Trade Secrets : Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition : Misappropriation right of publicity, False advertising.

#### UNIT – V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, international development in trade secrets law.

## TEXT BOOKS & REFERENCES:

- 1. Intellectual property right, Deborah. E. Bouchoux, cengage learing.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tate Mc Graw Hill Publishing company ltd.,

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-----------------------------|---|-------|---|
|                             | 4 | -/-/- | 4 |

(A60429) MICROPROCESSORS AND COMPUTER ORGANIZATION Course Objective:

- To develop an in-depth understanding of the operation of microprocessors, machine language programming & interfacing techniques.
- To explore the I/O organizations in depth.
- To explore the memory organization.

#### UNIT -I

**8086** Architecture: Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram, Register Organization, Memory Segmentation, Programming Model, Memory addresses, Physical memory organization, Architecture of 8086, signal descriptions of 8086- common function signals, Minimum and Maximum mode signals, Timing diagrams, Interrupts of 8086.

**Instruction Set and Assembly Language Programming of 8086**: Instruction formats, addressing modes, instruction set, assembler directives, macros, simple programs involving logical, branch and call instructions, sorting, evaluating arithmetic expressions, string manipulations.

#### UNIT -II

**I/O Interface:** 8255 PPI, various modes of operation and interfacing to 8086, interfacing keyboard, display, stepper motor interfacing, D/A and A/D converter.

**Interfacing with advanced devices:** Memory interfacing to 8086, Interrupt structure of 8086, Vector interrupt table, Interrupt service routine, Introduction to DOS and BIOS interrupts, Interfacing Interrupt Controller 8259 DMA Controller 8257 to 8086.

#### UNIT -III

**Register Transfer Language and Microoperations**: Register Transfer language. Register Transfer Bus and memory transfers, Arithmetic Mircrooperatiaons, logic micro operations, shift micro operations, Arithmetic logic shift unit. Instruction codes. Computer Registers Computer instructions – Instruction cycle.

# UNIT IV

**Memory** – Reference Instructions. Input – Output and Interrupt. STACK organization. Instruction formats. Addressing modes. DATA Transfer and manipulation. Program control. Reduced Instruction set computer.

**Micro Programmed Control :** Control memory, Address sequencing, microprogram example, design of control unit Hard wired control. Microprogrammed control.

# UNIT V

**The Memory System :** Basic concepts semiconductor RAM memories. Readonly memories Cache memories performance considerations, Virtual memories secondary storage. Introduction to RAID.

**Input-Output Organization :** Peripheral Devices, Input-Output Interface, Asynchronous data.

transfer Modes of Transfer, Priority Interrupt Direct memory Access, Input – Output Processor (IOP) Serial communication; Introduction to peripheral component, Interconnect (PCI) bus. Introduction to standard serial communication protocols like RS232, USB, IEEE1394.

### **TEXT BOOKS:**

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, SafeaZaky, Vth Edition, McGraw Hill.
- Advanced Microprocessors and Peripherals A. K. Ray and K.M. Bhurchandani, TMH, 2001.

#### **REFERENCES:**

- 1. Microprocessors and Interfacing- D.V. Hall, TMH, 2<sup>nd</sup> Edition, 1999.
- Computer Organization and Design David A. Patterson, Elseiver, 3<sup>rd</sup> Edition.
- Digital Logic and Computer Organization V. Rajaraman, T. Radha Krishnan, PHI, 2011.

#### Course Outcome:

After this course students understand in a better way the I/O and memory organization and the internal organization of popular 8086 microprocessors and hardware and software interaction and integration in depth. They should be in a position to write assembly language programs for various applications.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. EIE-II Sem

II Sem L T/P/D C 4 -/-/- 4

# (A60426) DIGITAL SIGNAL PROCESSING

#### **Objectives:**

This course is an essential course that provides design techniques for processing all type of signals in various fields. The main objectives are:

- To provide background and fundamental material for the analysis and processing of digital signals.
- To familiarize the relationships between continuous-time and discretetime signals and systems.
- To study fundamentals of time, frequency and Z-plane analysis and to discuss the inter-relationships of these analytic method.
- To study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- The impetus is to introduce a few real-world signal processing applications.
- To acquaint in FFT algorithms, Multi-rate signal processing techniques and finite word length effects.

#### UNIT -I:

**Introduction:** Introduction to Digital Signal Processing: Discrete Time Signals & Sequences, Linear Shift Invariant Systems, Stability, and Causality, Linear Constant Coefficient Difference Equations, Frequency Domain Representation of Discrete Time Signals and Systems.

**Realization of Digital Filters:** Applications of Z – Transforms, Solution of Difference Equations of Digital Filters, System Function, Stability Criterion, Frequency Response of Stable Systems, Realization of Digital Filters – Direct, Canonic, Cascade and Parallel Forms.

## UNIT -II:

**Discrete Fourier series:** DFS Representation of Periodic Sequences, Properties of Discrete Fourier Series, Discrete Fourier Transforms: Properties of DFT, Linear Convolution of Sequences using DFT, Computation of DFT: Over-Lap Add Method, Over-Lap Save Method, Relation between DTFT, DFS, DFT and Z-Transform.

**Fast Fourier Transforms:** Fast Fourier Transforms (FFT) - Radix-2 Decimation-in-Time and Decimation-in-Frequency FFT Algorithms, Inverse FFT, and FFT with General Radix-N.

#### UNIT -III:

**IIR Digital Filters:** Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital Filters from Analog Filters, Step and Impulse Invariant Techniques, Bilinear Transformation Method, Spectral Transformations.

# UNIT -IV:

**FIR Digital Filters:** Characteristics of FIR Digital Filters, Frequency Response, Design of FIR Filters: Fourier Method, Digital Filters using Window Techniques, Frequency Sampling Technique, Comparison of IIR & FIR filters.

# UNIT -V:

**Multirate Digital Signal Processing:** Introduction, Down Sampling, Decimation, Upsampling, Interpolation, Sampling Rate Conversion.

**Finite Word Length Effects:** Limit cycles, Overflow Oscillations, Round-off Noise in IIR Digital Filters, Computational Output Round Off Noise, Methods to Prevent Overflow, Trade Off Between Round Off and Overflow Noise, Dead Band Effects.

## TEXT BOOKS:

- Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.
- Discrete Time Signal Processing A. V. Oppenheim and R.W. Schaffer, PHI, 2009.
- Fundamentals of Digital Signal Processing Loney Ludeman, John Wiley, 2009.

#### **REFERENCE BOOKS:**

- 1. Digital Signal Processing Fundamentals and Applications Li Tan, Elsevier, 2008.
- Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- Digital Signal Processing S.Salivahanan, A.Vallavaraj and C.Gnanapriya, TMH, 2009.
- Discrete Systems and Digital Signal Processing with MATLAB Taan S. EIAli, CRC press, 2009.
- 5. Digital Signal Processing A Practical approach, Emmanuel C. Ifeachor and Barrie W. Jervis, 2<sup>nd</sup> Edition, Pearson Education, 2009.
- 6. Digital Signal Processing Nagoor Khani, TMG, 2012.

# **Course Outcomes:**

On completion of this subject, the student should be able to:

• Perform time, frequency and Z -transform analysis on signals and

systems.

- Understand the inter-relationship between DFT and various transforms.
- Understand the significance of various filter structures and effects of roundoff errors.
- Design a digital filter for a given specification.
- Understand the fast computation of DFT and appreciate the FFT processing.
- Understand the tradeoffs between normal and multi rate DSP techniques and finite length word effects.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

III Year B.Tech. EIE-II Sem

# L T/P/D C

4

# 4 -/-/-(A60224) PROCESS CONTROL INSTRUMENTATION

**Course Objective:** To acquire the knowledge on dynamics of simple processes, control actions, control settings, operation of control elements and control valves.

UNIT – I:

**Process Dynamics:** Process variables – Load variables – Dynamics of simple pressure, flow level and temperature process – interacting and non-interacting systems – continuous and batch process – self-regulation – Servo and Regulator operation - problems.

## UNIT – II:

**Control Actions and Controllers:** Basic control actions – characteristics of two position, three position, Proportional, Single speed floating, Integral and Derivative control modes – PI, PD, PID control modes – Problems.

**TYPES OF CONTROLLERS:** Pneumatic, Hydraulic and Electronic Controllers to realize various control actions.

#### UNIT – III:

**Controller Settings:** Evaluation criteria – 1/4th decay ratio, IEA, ISE, ITAE - determination of optimum settings for mathematically described process using time response and frequency response.

**TUNING OF CONTROLLERS:** Tuning process curve reaction method – continuous oscillation method – damped oscillation method – problems.

## UNIT – IV:

**FINAL CONTROL ELEMENTS:** I/P Converter, P/I converter - pneumatic, electric and hydraulic actuators – valve Positioner.

**Control Valves: Control valves – characteristic of** control valves – valve body – Globe, Butterfly, diaphragm, Ball valves – Control valve sizing – Cavitations, flashing - problems.

## UNIT – V:

**Multiloop Control System:** Feed forward control – Ratio control – Cascade control – Split range – Multivariable control and examples from distillation column and Boiler system.

## TEXT BOOKS:

 Chemical Process Control : An introduction to Theory and Practice – by Stephanopoulos, Prentice Hall, New Delhi, 1999.

2. Process Control – Harriott P., TMH, 1991.

# **REFERENCES:**

- 1. Process Control, Third Edition Liptak B.G., Chilton Book Company, Pennsylvania, 1995.
- 2. Process control by Pollard A., Heinemann Educational Books, London, 1971.
- Automatic Process Control by Eckman D.P., Wiley Eastern Ltd., New Delhi, 1993.

# Course Outcome :

Upon completion of this course the student shall be able to understand the concept how control actions are performed in the industries.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-----------------------------|---|-------|---|
|                             | 4 | -/-/- | 4 |

(A60505) OBJECT ORIENTED PROGRAMMING THROUGH JAVA Learning Objectives:

- To understand object oriented programming concepts, and apply them in problem solving.
- To learn the basics of java Console and GUI based programming.

## UNIT -I:

**Object Oriented Thinking and Java Basics**: Need for OOP Paradigm, Summary of OOP Concepts, Coping with Complexity, Abstraction Mechanisms, A Way of Viewing World – Agents, Responsibility, Messages, Methods, History of Java, Java Buzzwords, Data Types, Variables, Scope and Life Time of Variables, Arrays, Operators, Expressions, Control Statements, Type Conversion and Casting, Simple Java Program, Concepts of Classes, Objects, Constructors, Methods, Access Control, This Keyword, Garbage Collection, Overloading Methods and Constructors, Method Binding, Inheritance, Overriding and Exceptions, Parameter Passing, Recursion, Nested and Inner Classes, Exploring String Class.

#### UNIT -II:

Inheritance, Packages and Interfaces: Hierarchical Abstractions, Base Class Object, Subclass, Subtype, Substitutability, Forms of Inheritance-Specialization, Specification, Construction, Extension, Limitation, Combination, Benefits of Inheritance, Costs of Inheritance. Member Access Rules, Super Uses, Using Final with Inheritance, Polymorphism- Method Overriding, Abstract Classes, The Object Class.

Defining, Creating and Accessing a Package, Understanding Classpath, Importing Packages, Differences between Classes and Interfaces, Defining an Interface, Implementing Interface, Applying Interfaces, Variables in Interface and Extending Interfaces, Exploring Java.IO.

## UNIT -III:

**Exception Handling and Multithreading:** Concepts of Exception Handling, Benefits of Exception Handling, Termination or Resumptive Models, Exception Hierarchy, Usage of Try, Catch, Throw, Throws and Finally, Built in Exceptions, Creating Own Exception Sub Classes.

String Handling, Exploring Java.Util, Differences between Multi-Threading and Multitasking, Thread Life Cycle, Creating Threads, Thread Priorities, Synchronizing Threads, Interthread Communication, Thread Groups, Daemon Threads. Enumerations, Autoboxing, Annotations, Generics.

# UNIT -IV:

**Event Handling**: Events, Event Sources, Event Classes, Event Listeners, Delegation Event Model, Handling Mouse and Keyboard Events, Adapter Classes.

The AWT Class Hierarchy, User Interface Components- Labels, Button, Canvas, Scrollbars, Text Components, Check Box, Check Box Groups, Choices, Lists Panels – Scrollpane, Dialogs, Menubar, Graphics, Layout Manager – Layout Manager Types – Border, Grid, Flow, Card and Grid Bag.

## UNIT -V:

**Applets:** Concepts f Applets, Differences between Applets and Applications, Life Cycle of an Applet, Types of Applets, Creating Applets, Passing Parameters to Applets.

**Swing:** Introduction, Limitations of AWT, MVC Architecture, Components, Containers, Exploring Swing- Japplet, Jframe and Jcomponent, Icons and Labels, Text Fields, Buttons – The Jbutton Class, Check Boxes, Radio Buttons, Combo Boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

#### **TEXT BOOKS:**

- 1. Java the Complete Reference, 7<sup>th</sup> Editon, Herbert Schildt, TMH.
- 2. Understanding OOP with Java Updated Edition, T. Budd, Pearson Education.

#### **REFERENCE BOOKS:**

- 1. An Introduction to Programming and OO Design using Java, J.Nino and F.A. Hosch, John wiley & Sons.
- 2. An Introduction to OOP, Third Edition, T. Budd, Pearson Education.
- 3. Introduction to Java Programming, Y. Daniel Liang, Pearson Education.
- 4. An Introduction to Java Programming and Object Oriented Application Development, R.A. Johnson- Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S.Horstmann and Gary Cornell, Eighth Edition, Pearson Education.

6. Core Java 2, Vol 2, Advanced Features, Cay.S.Horstmann and Gary Cornell, eighth Edition, Pearson Education.

## Expected Outcome:

The student is expected to have

- Understanding of OOP concepts and basics of java programming (Console and GUI based).
- The skills to apply OOP and Java programming in problem solving.
- Should have the ability to extend his knowledge of Java programming further on his/her own.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| III Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-----------------------------|---|-------|---|
|                             | - | -/3/- | 2 |

#### (A61083) PROCESS CONTROL INSTRUMENTATION LAB

**Course Objective:** To provide better familiarity with the Theoretical concepts studied.

(Minimum Twelve experiments should be conducted)

- 1. Electronic controllers.
- 2. Servo regulator operation and DC motor control.
- 3. Control valve characteristics (Different types).
- 4. Flow level control unit.
- 5. Temperature level control unit.
- 6. Realization of control actions: Pneumatic controllers. Hydraulic controllers
- 7. Process tuning Process reaction curve method.
- 8. Process tuning continuous and damped oscillation method.
- 9. Operation of flow loop in plant.
- 10. Input converter Pneumatic actuator.
- 11. Input converter Hydraulic actuator.
- 12. Multi loop control systems Ratio Control.
- 13. Multi loop control systems Cascade Control.
- 14. Interacting and Non- interacting systems.
- 15. Feed-forward control.

#### Course Outcome:

Upon completing these course students shall be able realize the process and different controls applied to each process.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-------------------------|---|-------|---|
|                         | _ | _12/_ | 2 |

## (A60086) ADVANCED COMMUNICATION SKILLS (ACS) LAB

#### Introduction

Ш

The introduction of the Advanced Communication Skills Lab is considered essential at 3<sup>rd</sup> year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organise ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

## **Objectives:**

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

# Syllabus:

The following course content to conduct the activities is prescribed for the

Advanced Communication Skills (ACS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary - Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals -Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading & effective googling.
- Activities on Writing Skills Structure and presentation of different types of writing – letter writing/Resume writing/ e-correspondence/ Technical report writing/ Portfolio writing – planning for writing – improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- 5. Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through teleconference & video-conference and Mock Interviews.

## Minimum Requirement:

The Advanced Communication Skills (ACS) Laboratory shall have the following infra-structural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM-512 MB Minimum, Speed - 2.8 GHZ

- T. V, a digital stereo & Camcorder
- Headphones of High quality

**Prescribed Lab Manual:** A book titled **A** *Course Book of Advanced Communication Skills (ACS) Lab* published by Universities Press, Hyderabad.

#### Suggested Software:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dreamtech
- TOEFL & GRE(KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
- The following software from 'train2success.com'
  - > Preparing for being Interviewed
  - > Positive Thinking
  - > Interviewing Skills
  - Telephone Skills
  - > Time Management

## Books Recommended

- 1. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- Advanced Communication Skills Laboratory Manual by Sudha Rani, D, Pearson Education 2011.
- Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- Business and Professional Communication: Keys for Workplace Excellence. Kelly M. Quintanilla & Shawn T. Wahl. Sage South Asia Edition. Sage Publications. 2011.
- The Basics of Communication: A Relational Perspective. Steve Duck & David T. McMahan. Sage South Asia Edition. Sage Publications. 2012.
- 6. English Vocabulary in Use series, Cambridge University Press 2008.
- 7. Management Shapers Series by Universities Press(India)Pvt Ltd.,

Himayatnagar, Hyderabad 2008.

- 8. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 9. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 10. Handbook for Technical Writing by David A McMurrey & Joanne Buckely CENGAGE Learning 2008.
- 11. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 12. Master Public Speaking by Anne Nicholls, JAICO Publishing House, 2006.
- 13. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hil 2009.
- 14. Books on TOEFL/GRE/GMAT/CAT/ IELTS by Barron's/DELTA/ Cambridge University Press.
- 15. International English for Call Centres by Barry Tomalin and Suhashini Thomas, Macmillan Publishers, 2009.

#### DISTRIBUTION AND WEIGHTAGE OF MARKS:

#### Advanced Communication Skills Lab Practicals:

- The practical examinations for the ACS Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
- 2. For the English Language lab sessions, there shall be continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned, by inviting the External Examiner from outside. In case of the non-availability of the External Examiner, other teacher of the same department can act as the External Examiner.

#### Mini Project: As a part of Internal Evaluation

- 1. Seminar/ Professional Presentation
- 2. A Report on the same has to be prepared and presented.
- \* Teachers may use their discretion to choose topics relevant and suitable to the needs of students.
- \* Not more than two students to work on each mini project.
- \* Students may be assessed by their performance both in oral

# presentation and written report.

## Outcomes

- Accomplishment of sound vocabulary and its proper use contextually.
- Flair in Writing and felicity in written expression.
- Enhanced job prospects.
- Effective Speaking Abilities.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-I Sem

- L T/P/D C
- 4 -/-/- 4

#### (A71004) ANALYTICAL INSTRUMENTATION

**Course Objective :** To introduce spectroscopic methods, Chemical Instrumental Analysis, Electro-analytical methods to numerous applications ranging across healthcare, environmental and pharmaceutical industries. **UNIT-I:** 

**pH and Conductivity & Dissolved Component Analyser:** Conductivity meters – pH meters – Dissolved oxygen, hydrogen analyzers – Sodium analyzer – Silica analyzer and sampling systems.

**Gas Analysers:** Thermal conductivity types – CO monitor – NOX analyzer – H 2 S analyzer system and sampling – Industrial analyzer circuits, Theory and problems on Beer – Lamberts Law.

#### UNIT – II:

**Chromatography – I:** Gas chromatography – Liquid chromatography – their principles and applications.

**Chromatography – II:** oxygen analyzer – paramagnetic type – detectors and sampling systems.

UNIT – III:

**Spectrophotometers – I:** UV, VIS Spectrophotometers – Single beam and double beam instruments – Instrumentation associated with the above Spectrophotometers – Sources and detectors – Sources and detectors for IR Spectrophotometers.

## UNIT – IV:

**Spectrophotometers – II:** FT IR Spectrometer – Flame emission and atomic absorption Spectrophotometer – Atomic emission Spectrophotometer - sources for Flame Photometers and online calorific value measurements.

## UNIT – V:

**Principle of Nuclear Magnetic Resonance:** Instrumentation associated with NMR Spectrophotometer – Introduction to mass spectrophotometers, Principle and brief discussion on ELECTRON SPIN RESONANCE (ESR.)

**Special Analytical Instruments:** Nuclear radiation detectors – Ionization chamber – GM Counter – Proportional Counter – Solid state detectors ND PMT.

#### **TEXT BOOK:**

1. Handbook of Analytical Instruments – by Khandpur. TMH.

2. Analytical Instrumentation by Bela G. Liptak, CRC Press -1994. **REFERENCES:** 

- 1. Instrumental Methods of Analysis by Willard H.H., Merrit L.L., Dean J.A. and Seattle F.L., CBS Publishing and Distributors, 6/e, 1995.
- Instrument Technology by Jones B.E., Butterworth Scientific Publ., London, 1987.
- Mechanical and Industrial Measurements by Jain R.K., Khanna Publishing, New Delhi, 2/e, 1992.
- 4. Principles of Instrumental Analysis by Skoog D.A. and West D.M., Holt Sounder Publication, Philadelphia, 1985.
- 5. Instrumental Analysis by Mann C.K., Vickerks T.J. & Gullick W.H., Harper and Row Publishers, New York, 1974.

## Course Outcome :

The student is expected to acquire the knowledge is instruments used in Pharma and chemical Industries.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | 4 | -/-/- | 4 |

#### (A70439) EMBEDDED SYSTEMS

**Objective:** To learn the method of designing a real time system. **UNIT I :** 

**8051 Family Architecture:** 8051 Microcontroller Architecture, Microcontroller 8051 Pins, 8051 Ports, Internal and External Memory, Counter and Timers, Serial Communication in 8051, Interrupts, Interrupts in 8051, External Interrupts.

UNIT - II

**Introduction to Real – Time Operating Systems :** Tasks and Task States, Tasks and Data, Semaphores, and Shared Data; Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment.

## UNIT - III

**Basic Design Using a Real-Time Operating System**: Principles, Semaphores and Queues, HardReal-Time Scheduling Considerations, Saving Memory and Power, An example RTOS like uC-OS (Open Source); Embedded Software Development Tools: Host and Target machines, Linker/ Locators for Embedded.

Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System.

#### UNIT – IV

**ARM Processor Fundamentals:** Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, the Vector Table, Core Extensions, Architecture Revisions, ARM Processor Families.

#### UNIT V:

**Introduction to the ARM Instruction Set:** Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, Conditional Execution.

Introduction to the Thumb Instruction Set: Thumb Register Usage, ARM-Thumb Interworking, Other Branch Instructions, Data Processing Instructions, Single and Multiple- Register Load-Store Instructions, Stack Instructions, Software Interrupt Instruction.

#### **TEXT BOOKS:**

- 1. Microcontrollers Architecture, Programming, Interfacing and System Design by Raj Kamal, 2e, Pearson.
- 2. ARM System Developer's Guide Design & Optimizing System Software by Sloss, Elsevier.

## **REFERENCES**:

- 1. The 8051 Microcontroller & Embedded Systems using Assembly & C, by Kennet J Ayala and Dhananjay V. Gadre., Cengage Learning.
- Embedded / Real Time Systems: Concepts, Design & Programming (Black Book) 2005 edition,by – KVKK Prasad.
- 3. Introduction to Embedded Systems by Shibu K.V, MGH.

# Outcomes:

Upon completion of this course, the student will be able to

- Understand the basics of an embedded system.
- Design, implement and test an embedded system.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | 4 | -/-/- | 4 |

#### (A70432) VLSI DESIGN

## Course Objectives:

The objectives of the course are to:

- Give exposure to different steps involved in the fabrication of ICs using MOS transistor, CMOS/BICMOS transistors and passive components.
- Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- Provide concept to design different types of logic gates using CMOS inverter and analyze their transfer characteristics.
- Provide design concepts to design building blocks of data path of any system using gates.
- Understand basic programmable logic devices and testing of CMOS circuits.

# UNIT –I:

**Introduction:** Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS.

**Basic Electrical Properties:** Basic Electrical Properties of MOS and BiCMOS Circuits:  $I_{ds}$ -V<sub>ds</sub> relationships, MOS transistor threshold Voltage,  $g_m$ ,  $g_{ds}$ , Figure of merit  $\omega$ o; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

#### UNIT -II:

**VLSI Circuit Design Processes:** VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2  $\mu$ m CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

#### UNIT -III:

**Gate Level Design:** Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out, Choice of layers.

## UNIT -IV:

**Data Path Subsystems:** Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

#### UNIT -V:

**Programmable Logic Devices:** PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

**CMOS Testing:** CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

# TEXT BOOKS:

- 1. Essentials of VLSI circuits and systems Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition.
- CMOS VLSI Design A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3<sup>rd</sup> Ed, Pearson, 2009.
- 3. VLSI Design M. Michael Vai, 2001, CRC Press.

#### **REFERENCE BOOKS:**

- Introduction to VLSI Systems: A Logic, Circuit and System Perspective

   Ming-BO Lin, CRC Press, 2011.
- 2. CMOS logic circuit Design John .P. Uyemura, Springer, 2007.
- Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.
- 4. VLSI Design- K .Lal Kishore, V. S. V. Prabhakar, I.K International, 2009.
- 5. Introduction to VLSI Mead & Convey, BS Publications, 2010.

#### **Course Outcomes:**

Upon successfully completing the course, the student should be able to:

- Acquire qualitative knowledge about the fabrication process of integrated circuit using MOS transistors.
- Choose an appropriate inverter depending on specifications required for a circuit.
- Draw the layout of any logic circuit which helps to understand and estimate parasitics of any logic circuit.
- Design different types of logic gates using CMOS inverter and analyze their transfer characteristics.

- Provide design concepts required to design building blocks of data path using gates.
- Design simple memories using MOS transistors and can understand Design of large memories.
- design simple logic circuit using PLA, PAL, FPGA and CPLD.
- Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system.

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-I Sem

m L T/P/D C 4 -/-/- 4

#### (A71005) PC BASED INSTRUMENTATION

**Course Objective:** To introduce interfacing data acquisition systems to PC and introducing PLCs with their classification, operation and programming. **UNIT –I** 

Introduction to Computer Instrument Communication: Personal Computer, overview of operating System, I/O Ports, Plug-in-slots, PCI bus, Operators Interface. Computer Interfacing for Data Acquisition and Control – Interfacing Input Signals, Output system with continuous actuators. Data Acquisition and Control using Standard Cards: PC expansion systems, Plug-in Data Acquisition Boards; Transducer to Control room, Backplane bus – VXI.

#### unit –II

**Programmable logic controller (PLC) basics:** Definition, overview of PLC systems, input/output modules, power supplies and isolators.

**Basic PLC programming:** Programming On-Off inputs/ outputs. Creating Ladder diagrams Basic PLC functions PLC Basic Functions, register basics, timer functions, counter functions.

# UNIT – III

**PLC intermediate and advanced functions:** Arithmetic functions, number comparison functions, Skip and MCR functions, data move systems. Utilizing digital bits, sequencer functions, matrix functions. PLC Advanced functions: Analog PLC operation, networking of PLC.

#### UNIT –IV

**Application of PLC:** Controlling of Robot using PLC, PID control of continuous processes, Continuous Bottle-filling system, Batch mixing system, 3-stage air conditioning system, Automatic frequency control of Induction heating.

#### UNIT – V

**Related Topics:** Alternate programming languages. Auxiliary commands and functions. PLC installation, troubleshooting and maintenance. Field bus: Introduction, concept. HART protocol: Method of operation, structure, and applications. Smart transmitters, smart valves and smart actuators.

## TEXT BOOKS

Programmable Logic Controllers – Principles and Applications, John.
 W .Webb Ronald A Reis , Fourth edition, Prentice Hall Inc., New

Jersey, 1998.

2. Computer Control of Processes – M.Chidambaram. Narosa 2003.

### REFERENCES

- 1. PC Based Instrumentation and Control Third Edition by Mike Tooley; Elsevier.
- 2. PC Interfacing and Data Acquisition Techniques for Measurement, Instrumentation and Control. By Kevin James; Elsevier.
- 3. Practical Data Acquisition for Instrumentation and Control Systems by John Park and Steve Mackay.
- 4. Distributed Control Systems, Lukcas M.P, Van Nostrand Reinhold Co., New York, 1986.
- 5. Programmable Logic Controllers, Second edition, Frank D. Petruzella, Mc Graw Hill, Newyork, 1997.
- Programmable Logic Controllers Programming methods and applications-Prentice Hall by John R. Hackworth and Frederick D. Hackworth, Jr.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-I Sem |  |
|---------------------------|--|
|---------------------------|--|

| L | T/P/D | С |
|---|-------|---|
| 4 | -/-/- | 4 |

#### 4 -/-/-

### (A71117) TELEMETRY AND TELECONTROL

### (Elective-I)

Objective: To make students understand the application of telemetry techniques to Instrumentation.

### UNIT – I

Telemetry Principles: Introduction, Functional blocks of Telemetry system, Methods of Telemetry – Non Electrical, Electrical, Pneumatic, Frequency

Symbols and Codes: Bits and Symbols, Time function pulses, Line and Channel Coding, Modulation Codes. Inter symbol Interference.

### UNIT – II

Frequency& Time Division Multiplexed Systems: FDM, IRIG Standard, FM and PM Circuits, Receiving end, PLL.

TDM-PAM, PAM /PM and TDM - PCM Systems. PCM reception. Differential PCM Introduction, QAM, Protocols.

### UNIT – III

Satellite Telemetry: General considerations, TT&C Service, Digital Transmission systems, TT&C Subsystems, Telemetry and Communications.

Modern Telemetry: Zigbee, Ethernet.

### UNIT – IV

Optical Telemetry: Optical fibers Cable - Sources and detectors -Transmitter and Receiving Circuits, Coherent Optical Fiber Communication System.

#### UNIT - V

Telecontrol Methods: Analog and Digital techniques in Telecontrol, Telecontrol apparatus - Remote adjustment, Guidance and regulation -Telecontrol using information theory -Example of a Telecontrol System.

### TEXT BOOKS

- 1. Telemetry Principles - D. Patranabis, TMH.
- 2. Telecontrol Methods and Applications of Telemetry and Remote Control - by Swoboda G., Reinhold Publishing Corp., London, 1991.

### REFERENCES

- Handbook of Telemetry and Remote Control by Gruenberg L., McGraw Hill, New York, 1987.
- Telemetry Engineering by Young R.E., Little Books Ltd., London, 1988.
- Data Communication and Teleprocessing System by Housley T., PH Intl.,Englewood Cliffs, New Jersey, 1987.

**Outcome:** Upon completion of this course students will appreciate t he application of different telemetry systems and control to any process.

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 148 —

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| Year B.Tech. EIE-I Sem | L |
|------------------------|---|
|                        |   |

#### T/P/D -/-/-4 4

С

### (A70445) OPTO ELECTRONICS & LASER INSTRUMENTATION (Elective-I)

Course Objective: To make the students under stand the application of Opto Electronics and Lasers in the quantifying.

UNIT – I

IV

Optical Fibers and Their Properties Introduction to optical fiber - fiber characteristics - principles of light propagation through a fiber - Different types of fibers and their properties - Losses in the optical fiber - Dispersion - advantages and disadvantages of optical fibers.

### UNIT – II

Laser Fundamentals Introduction to lasers - Laser characteristics - Laser configuration – Three level and four level lasers – Q-switching – Mode locking - Types of lasers: Gas lasers, Solid lasers, Liquid lasers and Semiconductor lasers.

### UNIT – III

Opto-Electronic Components Optical sources: LED, LD - Optical detectors: PIN, APD - Electro-optic, Magneto optic and Acousto-optic Modulators.

#### UNIT - IV

Industrial Applications of Optical Fibers Interferometer method of measurement of length - Moire fringes - Measurement of pressure, Temperature, Current, Voltage, Liquid level and strain - fiber optic Gyroscope - Polarization maintaining fibers - Applications.

#### UNIT-V

Laser instrumentation Industrial applications of lasers - Lasers for measurement of distance, length, velocity, acceleration, current, voltage and atmospheric effect - Bio-medical applications - Holography: Principle, Methods, Holographic Interferometers and applications.

#### TEXT BOOKS

- 1. 'Optical Fiber Communication - Principles and Practice', J.M. Senior,, Prentice Hall of India, 1985.
- 'Introduction to Opto Electronics', J. Wilson and J.F.B. Hawkes, 2. Prentice Hall of India, 2001.

#### REFERENCES

Understanding Fiber Optics, 4th or 5th edition; Jeff Hecht; Prentice 1.

Hall publishers.

- 2. 'Optical Fibre Communication and Sensors', M. Arumugam, Anuradha Agencies, 2002.
- 3. 'Optical Fibre Communication', G. Keiser, 'McGraw Hill, 1995.
- 4. Lasers: Theory and Applications by Thyagarajan K. and Ghatak A.K., Plenum Press.
- 5. Monte Ross, 'Laser Applications', McGraw Hill, 1968.

#### Course Outcome:

Upon completion of this course the student shall be able to apply his instrumentation knowledge and understand how light and LASER can be used for measurements.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-I Sem

L T/P/D C 4 -/-/- 4

# (A70357) ROBOTICS AND AUTOMATION

### (Elective-I)

#### Objectives

- To study the various parts of robots and fields of robotics.
- To study the various kinematics and inverse kinematics of robots.
- To study the Euler, Lagrangian formulation of Robot dynamics.
- To study the trajectory planning for robot.
- To study the control of robots for some specific applications.

#### UNIT-I

**Basic Concepts** Definition and origin of robotics – different types of robotics – various generations of robots – degrees of freedom – Asimov's laws of robotics – dynamic stabilization of robots.

#### UNIT- II

**Power Sources and Sensors** Hydraulic, pneumatic and electric drives – determination of HP of motor and gearing ratio – variable speed arrangements – path determination – micro machines in robotics – machine vision – ranging – laser – acoustic – magnetic, fiber optic and tactile sensors.

#### UNIT- III

**Manipulators, Actuators and Grippers** Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers – design considerations.

### UNIT-IV

**Kinematics and Path Planning** Solution of inverse kinematics problem – multiple solution jacobian work envelop – hill climbing techniques – robot programming languages.

### UNIT-V

**Case Studies** Mutiple robots – machine interface – robots in manufacturing and non- manufacturing applications – robot cell design – selection of robot.

### TEXT BOOKS

- 1. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill Singapore, 1996.
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

#### REFERENCES

- 1. Deb.S.R., Robotics technology and flexible Automation, John Wiley, USA 1992.
- 2. Asfahl C.R., Robots and manufacturing Automation, John Wiley, USA 1992.
- 3. Klafter R.D., Chimielewski T.A., Negin M., Robotic Engineering An integrated approach, Prentice Hall of India, New Delhi, 1994.
- 4. Mc Kerrow P.J. Introduction to Robotics, Addison Wesley, USA, 1991.
- 5. Issac Asimov I Robot, Ballantine Books, New York, 1986.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-I Sem |  |
|---------------------------|--|
|---------------------------|--|

T/P/D C -/-/- 4

L.

4

#### (A70515) COMPUTER NETWORKS

#### (Elective-II)

#### **Objectives:**

- To introduce the fundamental various types of computer networks.
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce UDP and TCP Models.

#### UNIT-I

Overview of the Internet: Protocol, Layering Scenario, TCP/IP Protocol Suite: The OSI Model, Internet history standards and administration; Comparison of the OSI and TCP/IP reference model.

Physical Layer: Guided transmission media, wireless transmission media.

**Data Link Layer** – design issues, CRC Codes, Elementary Data link Layer protocols, sliding window protocol

### UNIT-II

**Multiple Access Protocols :** ALOHA, CSMA, Collision free protocols, Ethernet- Physical Layer, Ethernet Mac Sub layer, data link layer switching & use of bridges, learning bridges, spanning tree bridges, repeaters, hubs, bridges, switches, routers and gateways.

### UNIT-III

**Network Layer:** Network Layer Design issues, store and forward packet switching connection less and connection oriented networks-routing algorithms-optimality principle, shortest path, flooding, Distance Vector Routing, Count to Infinity Problem, Hierarchical Routing, Congestion control algorithms, admission control.

#### UNIT-IV

**Internetworking:** Tunneling, Internetwork Routing, Packet fragmentation, IPv4, Ipv6 Protocol, IP addresses, CIDR, IMCP, ARP, RARP, DHCP.

**Transport Layer:** Services provided to the upper layers elements of transport protocol-addressing connection establishment, connection release, Connection Release, Crash Recovery.

#### UNIT-V

**The Internet Transport Protocols :** UDP-RPC, Real Time Transport Protocols, The Internet Transport Protocols- Introduction to TCP, The TCP

Service Model, The TCP Segment Header, The Connection Establishment, The TCP Connection Release, The TCP Connection Management Modeling, The TCP Sliding Window, The TCP Congestion Control, The future of TCP. **Application Layer :** Introduction ,providing services, Applications layer paradigms, Client server model, Standard client-server application-HTTP, FTP, electronic mail, TELNET, DNS, SSH

#### **TEXT BOOKS:**

- 1. Data Communications and Networking Behrouz A. Forouzan, Fifth Edition TMH, 2013.
- 2. Computer Networks Andrew S Tanenbaum, 4th Edition, Pearson Education.

### **REFERENCE BOOKS:**

- 1. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education.
- 2. Understanding communications and Networks, 3rd Edition, W.A.Shay, Cengage Learning.
- 3. Introduction to Computer Networks and Cyber Security, Chwan-Hwa (John) Wu, J. David Irwin, CRC Press.
- 4. Computer Networks, L.L.Peterson and B.S.Davie, 4<sup>th</sup> edition, ELSEVIER.
- 5. Computer Networking: A Top-Down Approach Featuring the Internet, James F.Kurose,K.W.Ross,3<sup>rd</sup> Edition, Pearson Education.

#### Outcomes:

- Students should be understand and explore the basics of Computer Networks and Various Protocols. He/She will be in a position to understand the World Wide Web concepts.
- Students will be in a position to administrate a network and flow of information further he/she can understand easily the concepts of network security, Mobile and ad hoc networks.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-I Sem | L | T/P/D | С |
|---------------------------|---|-------|---|
|                           | 4 | -/-/- | 4 |

#### (A70435) DIGITAL CONTROL SYSTEMS

#### (Elective-II)

#### **Objective:**

This course gives fundamentals digital control systems, z-transforms, state space representation of the control systems, concepts of controllability and observability, estimation of stability in different domains, design of discrete time control systems, compensators, state feedback controllers, state observers through various transformations.

## UNIT – I:

**Introduction:** Examples of Data control systems – Digital to Analog conversion and Analog to Digital conversion, sample and hold operations.

**Z** – **Transforms:** Introduction, Linear difference equations, pulse response, Z – transforms, Theorems of Z – Transforms, the inverse Z – transforms, Modified Z- Transforms. Z-Transform method for solving difference equations; Pulse transforms function, block diagram analysis of sampled – data systems, mapping between s-plane and z-plane.

#### UNIT – II:

**State Space Analysis:** State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and its Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state – space equations. Concepts of Controllability and Observability, Tests for controllability and Observability. Duality between Controllability and Observability, Controllability and Observability conditions for Pulse Transfer Function.

#### UNIT -III:

**Stability Analysis**: Mapping between the S-Plane and the Z-Plane – Primary strips and Complementary Strips – Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane.

Jury stability test – Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.

#### UNIT-IV:

**Design of Discrete Time Control System :** Transient and steady – State response Analysis – Design based on the frequency response method – Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead-Lag compensators and digital PID controllers.

#### UNIT – V:

**State Feedback Controllers & Observers:** Design of state feedback controller through pole placement – Necessary and sufficient conditions, Ackerman's formula.

State Observers – Full order and Reduced order observers.

### Outcome:

After going through this course the student gets a thorough knowledge on, basics of digital control systems, z-transforms, mapping between S-plane and Z-plane, state-space analysis, concept of controllability and observability, derivation of pulse-transfer function, stability analysis in S-domain and Z-domains, stability through jury-stability test, stability through bilinear transformation and R-H criteria, design of discrete-time control systems, design of lag, lead, lead-lag compensators, design of PID controllers and design of state feedback controllers and observers, with which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

#### TEXT BOOK:

1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2<sup>nd</sup> Edition.

### **REFERENCE BOOKS:**

- Digital Control Systems, Kuo, Oxford University Press, 2<sup>nd</sup> Edition, 2003.Digital Control and State Variable Methods by M.Gopal, TMH.
- 2. Digital Control Systems , V. I. George, C. P. Kurian, Cengage Learning.
- 3. Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli, AP Academic Press.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| L | T/P/D | С |
|---|-------|---|
|   |       |   |

4 -/-/- 4

# (A71112) MEDICAL INSTRUMENTATION

#### (Elective-II)

Objectives: To understand

- the genesis of biopotentials
- different types electrodes and bioamplifiers
- Electrical Safety

#### UNIT-I

**Origin of Biopotentials :** Cell Structure, Electrical activity – Resting State, Active State, Action Potential.

**Nernst Equation:** Derivations and its significance. Refractory Period, Characteristics of Stimulus.Strength-Duration relationship.Electrical equivalent circuit of Axon. Membrane time and space constants, Membrane conductance, Nerve conduction.

Propagation of impulses in unmyelinated and myelinated nerve fiber, Electrical properties of synaptic junctions - EPSP and IPSP, Electroneurogram (ENG), Electromyogram (EMG), Electrocardiogram (ECG), Electroretinogram (ERG), Electroencephalogram (EEG), Electrooculogram (EOG).

#### UNIT-II

**Bio Potential Electrodes :** The Electrode – Electrolyte Interface, Polarization, Polari able and Nonpolarizable Electrodes, Electrode Behavior and circuit Models, The Electrode – skin Interface and Motion Artifact, Body-surface Recording Electrodes, Internal Electrodes, Electrode Arrays, Microelectrodes and its equivalent circuit, Electrodes for Electric stimulation of Tissue.

### UNIT-III

**Bio Amplifiers :** General considerations for signal Conditioners, Pre-Amplifiers, Differential amplifier, Instrumentation Amplifier, Carrier amplifier, Chopper amplifier, Isolation amplifier, Sources of Noise in Low – Level Measurements.

## UNIT-IV

**Basic Recording Systems:** Writing Systems, Direct Writing Recorders, Thermal & Ink Systems the Ink Jet Recorder, Potentiometric Recorder, Digital Recorders, Thermal Array Recorder, Video Printers, Electrostatic Recorder, Medical oscilloscope, LCD Display.

#### UNIT-V

**Electrical Safety :** Physiological effects of Electricity, Important Susceptibility parameters, Distribution of Electric Power, Macro shock hazards, Micro Shock hazards, Electrical - Safety codes and Standards, Basic Approaches to protection against shock, Protection : Power distribution, Protection : Equipment Design, Electrical Safety Analyzers, Testing the Electrical System. Test of Electric Appliances.

#### TEXT BOOK:

1. John G. Webster. Medical Instrumentation.- Application and Design. John Wiley and Sons. Inc., New York. Third edition 2013.

### **REFERENCE:**

- 1. R.S. Khandpur. Hand Book of Biomedical Instrumentation, McGraw Hill, 2<sup>nd</sup>Edition, 2003.
- L. A Geddes, Principles of Applied Biomedical Instrumentation, John Willy & Sons, 1989.
- Joseph .J. Carr, John M. Brown, Introduction to Biomedical Equipment Technology, Pearson-2001.

#### Outcomes:

- Know the basic levels of neuronal organization.
- Differentiate the electrodes used to acquire biopotentials and list the problems associated with acquisition.
- Recognize physiological parameters.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-I Sem

- L T/P/D C
- -/3/- 2

### (A70497) EMBEDDED SYSTEMS LABORATORY

This lab is to provide skills needed to develop software for ARM based Embedded System. The aim is to teach the basics of device drivers, programming for Linux Kernel. The lab programs will be taught on ARM board with simple devices like GPIOs, LEDs, seven segment displays, keypads, Temperature sensors and E<sup>2</sup>PROM devices. And, also to provide interface to real world through ADCs and DACs.

The goal is to focus on learning the kernel interface, while still programming real hardware.

#### **Required Skill-set:**

- 1. Keil IDE or Equivalent IDE
- 2. Embedded C
- 3. ARM architecture
- 4. LINUX OS
- 5. Circuit simulation software like Proteus, Multisim (MCU).

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

### IV Year B.Tech. EIE-I Sem

T/P/D С L -/3/-2

-

# (A71084) ANALYTICAL INSTRUMENTATION LAB

- 1. Gas analyzers.
- 2. Gas and liquid chromatography.
- 3. Spectrometer: UV and VIS spectrometer.
- 4. Spectrometer: IR and FT IR Spectrometer.
- 5. Flame photometer.
- 6. Measurement of calorific value.
- 7. Mass spectrometer.
- pH Meter. 8.
- 9. Conductivity Meter.
- Bomb Calorimeter. 10.
- 11. GM Counter.
- 12. Measurement of Gas Pollutents- Co, No, So.
- 13. NMR Spectrometer.
- 14. Water Purity Measurement.
- 15. Turbidity Measurement.

# (To perform any Twelve experiments)

## Equipment:

Gas/ Liquid chromatographer, Gas Analyzer, UV & VIS spectrometer, IR spectrophotometer, Absorption spectrophotometer, Flame photometer, Bomb calorimeter.

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-II Sem

- L T/P/D C
  - 4 -/-/- 4

### (A80219) INSTRUMENTATION PRACTICES IN INDUSTRIES (Elective-III)

**Course Objective:** To provide the knowledge of basic and contemporary instrumentation and control practices in the Industries like Paper and Pulp, Petrochemical, Aerospace etc.,

Unit I:

#### Pulp and Paper Industries:

*Manufacture of pulp:* Raw Materials, Pulping Processes, Craft Pulping, Soda Pulping, Sulfite Pulping, Semi Chemical Pulping, Mechanical and Thermomechanical Pulping.

*Manufacture of paper:* Wet Processing, Fourdrinier Machine, Coated Papers, Speciality Papers.

Unit II:

*Cement Industries:* Portland Cements, Other Cements, Lime, Gypsum, Miscellaneous Calcium Components, Magnesium Components.

*Nuclear Industries:* Nuclear Reactions, Uranium and Thorium Fission, Uranium as an Energy Source, Nuclear Fuels, Nuclear Reactors, Fusion Reactions, Fusion, Processing Nuclear Materials, Isotopes and Isotope Separation, Protection from Radioactivity, Waste Disposal.

#### Unit III:

**Petrochemical Industries:** Unit Operations: Drying-Separation-Heat Transfer-Distillation-Thermal Cracking- Catalytic Cracking-Catalytic Reforming- Hydro Cracking – Hydro Treating -Chemical Oxidation-Chemical Reduction-Polymerisation- Alkylation- Isomerization-Production of Ethylene, Acetylene- And Propylene from Petroleum.

*Measurements in refineries petrochemical industries* – Differential Pressure Transmitter, Thermocouples Infrared Pyrometer, Mass Flow Meters, Potentiometric Level Transmitter, Vacuum Measurement.

Unit IV:

#### Flight Instrumentation-I

**Primary Flight Instruments** (Principle of operation): Pitot Static System For The Measurement Of Aircraft Speed, Aneroid Barometer And Altimeter, Gyroscope And Its Properties, Methods Of Operating Gyroscopic Flight Instruments, Gyro Horizon, Vacuum Driven Gyro Horizon, Electric Gyro Horizon.

*Heading Indicating Instruments* (Principle of operation): Direct Reading Magnetic Compass, Liquid Damping Direct Reading Compass and Liquid Expansion Compensating Direct Reading Compass, Remote Indicating Compass System.

Unit V:

#### Flight Instrumentation-II

*Measurement of Engine Speed, Engine Temperature, Aircraft Pressure* (Principle Of Operation): Mechanical Tachometers, Electrical Tachometers, Air Temperature Sensors To Measure RAT And SAT, Radiation Pyrometer System, Methods Of Measuring Pressure, U-Tube Manometer, Direct Reading Pressure Gauges, Remote Indicating Pressure Gauges.

*Measurement of Fuel quantity and Fuel flow* (Principle of Operation): Float Type Fuel Quantity Indicating System, Capacitance Type Fuel Gauge System, Fuel Flow Measurement, Independent and Integrated Flow Meter System.

### **TEXT BOOKS:**

- 1. Austin G.T. Shreeves, Chemical Process Industries, Mcgraw-Hill International Student Edition, Singapore, 1985.
- 2. Pallet, E.H.J. Aircrafts Instruments and Integrated Systems. Longman Scientific & Technical, McGrawhill, 1992.

#### **REFERENCES:**

- 1. Principles of Industrial Instrumentation, D. Patranabis, Mc Graw Hill.
- 2. John R Lavigne, An Introduction To Paper Industry Instrumentation, Miller Freeman Publications, Califirnia, 1985 Series.
- 3. Liptak B.G. Instrumentation in Process Industries, Chilton Book Company, 1994.
- 4. Liptak B.G., Process Measurement and Analysis, Third Edition, Chilton Book Company, 1996.

#### Course Outcome:

Upon completion of this course the student shall be able to apply his instrumentation knowledge which he acquired during the course of study.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-II Sem

### L T/P/D C 4 -/-/- 4

### (A82913) MEMS AND APPLICATIONS

#### (Elective-III)

**Course Objective:** To provide knowledge of fabrication process and applications.

Unit I:

Introduction to MEMS: MEMS ;Use of MEMS. Fabrication process.

**The Substrate and adding material to it:** Introduction, The silicon substrate, Additive technique: Oxidation, Additive technique: Physical vapour deposition, other additive techniques.

### Unit II:

**MEMS Fabrication: Creating and transferring patterns-Photolithography:** Introduction, Keeping it clean, Photoresist, Working with resist, masks, Resolution, Permanent resists.

**Creating structures-Micromachining:** Introduction, Bulk Micromachining processes, Surface Micromachining, Process Integration.

Unit III:

#### MEMS Transducers: I

Thinking about modelling: What is modeling? Units, The input-output concept, Physical variables and notation, preface to the modeling chapters.

**MEMS Transducers-An overview of how they work:** What is a transducer? Distinguishing between sensors and actuators, Response characteristics of transducers, MEMS Sensors: Principles of operation, MEMS Actuators: Principles of operation, Signal conditioning, RF applications and Optical applications.

**Piezoresistive transducers**: Introduction, Modeling Piezoresistive transducers, Piezoresistive pressure sensor.

Unit IV:

### MEMS Transducers: II

**Capacitive transducers:** Introduction, Capacitor fundamentals, Modeling a capacitor sensor, Capacitive accelerometer.

Unit V:

#### MEMS Transducers: III

**Piezoelectric transducers:** Introduction, Modeling piezoelectric materials, Mechanical modelling of beams and plates, Cantilever piezoelectric actuator.

Thermal transducers: Introduction,Basic heat transfer, Hot-arm actuator. **TEXT BOOKS:** 

1. Introductory MEMS Fabrication and Applications.

### **REFERENCES:**

- 1. **MEMS and microsystems: D**esign and manufacture, Tai-Ran Hsu, McGraw-Hill, 2002.
- MEMS: Applications Mohamed Gad-el-Hak, CRC Press, 29-Nov-2005.

## Course Outcome:

Upon completion of this course the student shall be able to apply his instrumentation knowledge and understand MEMS fabrication and its use in the industries.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | 4 | -/-/- | 4 |

#### (A80242) SCADA & DCS

### (Elective - III)

**Course Objective:** To make students learn about the theoretical concepts of HMI and distributed network.

UNIT I:

Introduction to SCADA: Definition of SCADA, applicable process, Elements of SCADA system, Limited two way system, Real time system, communication access and master slave, scan interval, Murphy's law and remote control, safety instrumented system, regulatory requirement. Communication:long distance, protocol, modem, synchronous and asynchronous.

### UNIT II:

**RTU,MTU** and sensors and wiring: Communication interface,protocol details,Control:Discrete,Analog,Pulse and serial.Monitor of analog ,pulse count signal,serial signal,Non RTU functions.

Configration of any process. Applications ,data storage. Sensors,Actutators and wiring:standardinzation and maintenance.

### UNIT III:

**Distributed Control System** Evolution – Architectures – Comparison – Local control unit – Process interfacing issues – Communication facilities.

## UNIT IV:

**Interfaces in DCS :** Operator interfaces - Low level and high level operator interfaces – Operator displays - Engineering interfaces – Low level and high level engineering interfaces – General purpose computers in DCS.

### UNIT V:

Hart and Field Bus Evolution of signal standards – HART communication protocol – Communication modes – HART networks – Control system interface – HART and OSI model – Filed bus introduction – General field bus architecture – Basic requirements of field bus standard – Field bus topology – Inter operability.

#### **TEXT BOOKS**

- 1. SCADA by Stuart .A.Boyer,3 rd Edition, ISA.
- 2. Michael P. Lukas, 'Distributed Control System', Van Nostrand Reinhold Co., Canada, 1986.

#### **REFERENCES:**

1. A.S. Tanenbaum, 'Computer Networks', 3<sup>rd</sup> Edition, Pearson Education, 1996 / PHI.

# Course Outcome:

Upon completion of this course the student shall be able to understand HMI and DCS architecture.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

IV Year B.Tech. EIE-II Sem

| iech. Eie-ii Sem | L | I/P/D | C |
|------------------|---|-------|---|
|                  | 4 | -/-/- | 4 |

ı.

T/D/D

~

#### (A80240) POWER PLANT INSTRUMENTATION

#### (Elective - IV)

**Course Objective:** Able to introduce various methods of power generation and specially provide the knowledge of instrumentation and control in thermal power plants.

#### UNIT - I:

**Overview of Power Generation:** Introduction, Various sources of Electrical energy, Non-conventional energy sources, Conventional energy sources, Importance of Instrumentation and control in power generation, piping and instrumentation diagram, Cogeneration of power, Control Rooms.

### UNIT - II:

**Instrumentation and Control in Water Circuit:** Water circuit, Boiler Feed Water circulation, Measurements in Water circuit, Controls in water circuit, Impurities in Water and Steam.

#### UNIT - III:

**Instrumentation and Control in Air- Fuel Circuit:** Air- Fuel Circuit, Measurement in Air- Fuel Circuit, Controls in Air- Fuel Circuit, Analytical Measurement.

### UNIT - IV:

**Power Plant Management:** Introduction, Master Control, Combustion Process, Boiler Efficiency, Maintenance of Measuring Instruments, Intrinsic and Electrical Safety, Interlocks for Boiler Operation, Computer based Control and Data Logging Systems, Distributed Control Systems.

### UNIT - V:

**Turbing – Monitoring and Control:** Introduction, Turbine System Inlet System, turbine Measurements, Turbine Control Systems, Lubrication for Turbo-alternator, Turbo-alternator Cooling System.

#### **TEXT BOOK:**

1. Power Plant Instrumentation by K. Krishnaswamy, M. Ponni Bala, M. Ponni Bala PHI Learning Pvt. Ltd., 2011.

#### **REFERENCES:**

1. **Power-Plant Control and Instrumentation:** The Control of Boilers and Hrsg Systems, David Lindsey IET, 2000.

2. Pow Plant Engg, Nag, Tata McGraw-Hill Education, 07-Aug-2008. Course Outcome: Upon completion of this course the student shall be able to apply his knowledge and understand how instrumentation system is designed for a power plant.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| Year B.Tech. EIE-II Sem | L | T/P/D | С |
|-------------------------|---|-------|---|
|                         | 4 | -/-/- | 4 |

### (A80436) DIGITAL IMAGE PROCESSING (Elective-IV)

#### Course Objectives:

IV

The objectives of the course are to:

- Provide the student with the fundamentals of digital image processing.
- Give the students a taste of the applications of the theories taught in the subject. This will be achieved through the project and some selected lab sessions.
- Introduce the students to some advanced topics in digital image processing.
- Give the students a useful skill base that would allow them to carry out further study should they be interested and to work in the field.

#### UNIT -I:

**Digital Image Fundamentals & Image Transforms:** Digital Image Fundamentals, Sampling and Quantization, Relationship between Pixels.

**Image Transforms:** 2-D FFT, Properties, Walsh Transform, Hadamard Transform, Discrete Cosine Transform, Haar Transform, Slant Transform, Hotelling Transform.

### UNIT -II:

**Image Enhancement (Spatial Domain):** Introduction, Image Enhancement in Spatial Domain, Enhancement Through Point Operation, Types of Point Operation, Histogram Manipulation, Linear and Non – Linear Gray Level Transformation, Local or Neighborhood Operation, Median Filter, Spatial Domain High-Pass Filtering.

**Image Enhancement (Frequency Domain):** Filtering in Frequency Domain, Obtaining Frequency Domain Filters from Spatial Filters, Generating Filters Directly in the Frequency Domain, Low Pass (Smoothing) and High Pass (Sharpening) Filters in Frequency Domain.

#### UNIT -III:

**Image Restoration:** Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

### UNIT -IV:

**Image Segmentation:** Detection of Discontinuities, Edge Linking And Boundary Detection, Thresholding, Region Oriented Segmentation.

**Morphological Image Processing:** Dilation and Erosion: Dilation, Structuring Element Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, The Hit or Miss Transformation.

### UNIT -V:

**Image Compression:** Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Huffman and Arithmetic Coding, Error Free Compression, Lossy Compression, Lossy and Lossless Predictive Coding, Transform Based Compression, JPEG 2000 Standards.

#### **TEXT BOOKS:**

- Digital Image Processing Rafael C. Gonzalez, Richard E. Woods, 3<sup>rd</sup> Edition, Pearson, 2008.
- Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar - TMH, 2010.

### **REFERENCE BOOKS:**

- Digital Image Processing and Analysis-Human and Computer Vision Application with using CVIP Tools - Scotte Umbaugh, 2<sup>nd</sup> Ed, CRC Press, 2011.
- Digital Image Processing using MATLAB Rafael C. Gonzalez, Richard E Woods and Steven L. Eddings, 2<sup>nd</sup> Edition, TMH, 2010.
- 3. Fundamentals of Digital Image Processing A.K.Jain , PHI, 1989.
- Digital Image Processing and Computer Vision Somka, Hlavac, Boyle- Cengage Learning (Indian edition) 2008.
- Introductory Computer Vision Imaging Techniques and Solutions-Adrian low, 2008, 2<sup>nd</sup> Edition.
- Introduction to Image Processing & Analysis John C. Russ, J. Christian Russ, CRC Press, 2010.
- Digital Image Processing with MATLAB & Labview Vipula Singh, Elsevier.

#### **Course Outcomes:**

Upon successfully completing the course, the student should:

• Have an appreciation of the fundamentals of Digital image processing including the topics of filtering, transforms and morphology, and image analysis and compression.

- Be able to implement basic image processing algorithms in MATLAB.
- Have the skill base necessary to further explore advance d topics of Digital Image Processing.
- Be in a position to make a positive professional contribution in the field of Digital Image Processing.
- At the end of the course the student should have a clear impression of the breadth and practical scope of digital image processing and have arrived at a level of understanding that is the foundation for most of the work currently underway in this field.

ELECTRONICS AND INSTRUMENTATION ENGINEERING 2013-14 171 -----

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. | EIE-II | Sem |  |
|-----------------|--------|-----|--|
|                 |        |     |  |

T/P/D -/-/-4 4

С

L

# (A80238) NEURAL NETWORKS AND FUZZY LOGIC

#### (Elective-IV)

#### **Objective:**

This course introduces the basics of Neural Networks and essentials of Artificial Neural Networks with Single Layer and Multilayer Feed Forward Networks. Also deals with Associate Memories and introduces Fuzzy sets and Fuzzy Logic system components. The Neural Network and Fuzzy Network system application to Electrical Engineering is also presented. This subject is very important and useful for doing Project Work.

#### UNIT - I:

Introduction & Essentials to Neural Networks Introduction, Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin-Huxley Neuron Model, Integrate-and-Fire Neuron Model, Spiking Neuron Model, Characteristics of ANN, McCulloch-Pitts Model, Historical Developments, Potential Applications of ANN. Artificial Neuron Model, Operations of Artificial Neuron, Types of Neuron Activation Function, ANN Architectures, Classification Taxonomy of ANN - Connectivity, Neural Dynamics (Activation and Synaptic), Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application.

#### UNIT-II:

Single & Multi Layer Feed Forward Neural Networks Introduction, Perceptron Models: Discrete, Continuous and Multi-Category, Training Algorithms: Discrete and Continuous Perceptron Networks, Perceptron Convergence theorem, Limitations of the Perceptron Model, Applications. Credit Assignment Problem, Generalized Delta Rule, and Derivation of Backpropagation (BP) Training, Summary of Back-propagation Algorithm, Kolmogorov Theorem, Learning Difficulties and Improvements.

### UNIT-III:

Associative Memories-I: Paradiams of Associative Memory. Pattern Mathematics, Hebbian Learning, General Concepts of Associative Memory (Associative Matrix, Association Rules, Hamming Distance, The Linear Associator, Matrix Memories, Content Addressable Memory).

### UNIT-IV:

Associative Memories-II: Bidirectional Associative Memory (BAM) Architecture, BAM Training Algorithms: Storage and Recall Algorithm, BAM Energy Function, Proof of BAM Stability Theorem. Architecture of Hopfield

Network: Discrete and Continuous versions, Storage and Recall Algorithm, Stability Analysis, Capacity of the Hopfield Network Summary and Discussion of Instance/Memory Based Learning Algorithms, Applications.

### UNIT – V:

**Fuzzy Logic Classical & Fuzzy Sets:** Introduction to classical sets properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, properties, fuzzy relations, cardinalities, membership functions.

**Fuzzy Logic System Components:** Fuzzification, Membership value assignment, development of rule base and decision making system, Defuzzification to crisp sets, De-fuzzification methods.

#### **TEXT BOOKS:**

- 1. Neural Networks, Fuzzy logic, Genetic algorithms: synthesis and applications, Rajasekharan and Pai, PHI.
- 2. Neural Networks and Fuzzy Logic, C. Naga Bhaskar, G. Vijay Kumar, BS Publications.

### **REFERENCE BOOKS:**

- 1. Artificial Neural Networks, B. Yegnanarayana, PHI.
- 2. Artificial Neural Networks, Zaruda, PHI.
- 3. Neural Networks and Fuzzy Logic System, Bart Kosko, PHI.
- 4. Fuzzy Logic and Neural Networks, M. Amirthavalli, Scitech Publications India Pvt. Ltd.
- 5. Neural Networks, James A Freeman and Davis Skapura, Pearson Education.
- 6. Neural networks by satish Kumar, TMH, 2004.
- 7. Neural Networks, Simon Hakins, Pearson Education.
- 8. Neural Engineering, C.Eliasmith and CH.Anderson, PHI.

#### Outcome:

After going through this course the student gets a thorough knowledge on, , biological neurons and artificial neurons, comparative analysis between human and computer, artificial neural network models, characteristics of ANN's, different types of activation functions, learning strategies, learning rules, perceptron models, single and multi layer feed-forward and feed-back neural networks, back-propagation algorithm, Kolmogorov Theorem, different types of associative memories and basics of fuzzy logic, concept of classical and fuzzy sets, fuzzy logic system components fuzzification and defuzzification, with which he/she can able to apply the above conceptual things to real-world electrical and electronics problems and applications.

### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-II Sem |  |
|----------------------------|--|
|----------------------------|--|

| Sem | L | T/P/D | С |  |
|-----|---|-------|---|--|
|     | 4 | -/-/- | 4 |  |

#### (A80241) RELIABILITY ENGINEERING

Unit - I

**Basic Concepts of Reliability:** Introduction, Reliability and quality, Failures and failure modes, Causes of failures and reliability, Maintainability and availability, History of reliability, reliability literature.

#### Unit-II

**Reliability Mathematics:** Introduction, Random experiment, Probability, Random variables, Distribution functions, Discrete distribution, Continuous distribution, Numerical characteristics of random variables, Laplace transform.

**Component Reliability and Hazard Models:** Introduction, Component reliability from test data, Mean time to failure, Time – dependent hazard models, Stress- Dependent hazard models, Derivation of reliability function using Markov, Treatment of field data.

#### Unit-III

System Reliability Models: Introduction - Systems with series components - Systems with parallel components - k-out - of- m systems - Non series parallel systems - Systems with - mixed - mode failures - Fault- tree technique

### Unit-IV

**Maintainability and Availability Concepts:** Introduction - Maintainability function - Availability function - Frequency of failures - Two-unit parallel systems with repair - k-out-of-m systems - Preventive maintenance.

**Reliability Improvement:** Introduction - Improvement components -Redundancy - Element redundancy - Unit redundancy - Stand by redundancy - Optimization - Reliability – cost trade – off.

#### Unit-V

**Economics of Reliability Engineering:** Economic issues -Manufacture's cost- Customer's cost - Reliability achievement cost - models - Reliability utility cost models - Depreciation cost models - Availability – cost – model of parallel systems.

**Reliability Management:** Reliability programming - Management policies and decision - Reliability management by objectives - Reliability group -Reliability data : Acquisition and analysis - Managing people for reliability

#### **TEXT BOOKS:**

- 1. Reliability Evaluation of Engineering Systems. R. Billington, RN Allan, BS Publications 2007.
- 2. Reliability, Maintenance and safety Engineering Dr. A.K. Gupta, Laxmi Publications

# **REFERENCE BOOKS:**

- 1. Reliability Engineering- Patrick DTO-Wiley India.
- 2. Reliability Engineering and life testing -Naikan-PHI.
- 3. Engineering Maintenance a Modern Approach, B.S.Dhillon, 2002 CRR Publications.
- 4. Maintenance Engineering and Management RC Misra, PHI.
- 5. Reliability Engineering Balaguruswamy- TMH.
- 6. Reliability Engineering- L.S.Srinath.

| IV Year B.Tech. EIE-II Sem              | L | T/P/D | С |
|-----------------------------------------|---|-------|---|
|                                         | - | -/-/- | 2 |
| (A80087) INDUSTRY ORIENTED MINI PROJECT |   |       |   |

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | - | -/6/- | 2 |
|                            |   |       |   |

#### (A80089) SEMINAR

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-II Sem | L | T/P/D  | С  |
|----------------------------|---|--------|----|
|                            | - | -/15/- | 10 |
|                            |   |        |    |

# (A80088) PROJECT WORK

#### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

| IV Year B.Tech. EIE-II Sem | L | T/P/D | С |
|----------------------------|---|-------|---|
|                            | - | -/-/- | 2 |

(A80090) COMPREHENSIVE VIVA